Please wait a minute...
Chin. Phys. B, 2014, Vol. 23(3): 030304    DOI: 10.1088/1674-1056/23/3/030304
GENERAL Prev   Next  

Evolution law of a negative binomial state in an amplitude dissipative channel

Chen Feng (陈锋)a b, Fan Hong-Yi (范洪义)b
a Department of Mathematics and Physics, Hefei University, Hefei 230022, China;
b Department of Material Science and Engineering, University of Science and Technology of China, Hefei 230026, China
Abstract  For the first time we derive the evolution law of the negative binomial state  in an amplitude dissipative channel with a damping constant κ. We find that after passing through the channel, the final state is still a negative binomial state, however the parameter γ evolves into γ’, where γ’=γ/(e-2κt(1-γ)+γ). The decay law of the average photon number is also obtained.
Keywords:  negative binomial state      thermal entangled state representation      master equation for damping      Kraus operator  
Received:  08 July 2013      Revised:  20 August 2013      Accepted manuscript online: 
PACS:  03.65.-w (Quantum mechanics)  
  42.50.-p (Quantum optics)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11175113 and 11247009).
Corresponding Authors:  Chen Feng     E-mail:  chenfeng@hfuu.edu.cn

Cite this article: 

Chen Feng (陈锋), Fan Hong-Yi (范洪义) Evolution law of a negative binomial state in an amplitude dissipative channel 2014 Chin. Phys. B 23 030304

[1] Chen F and Fan H Y 2012 Science China 55 2076
[2] Chen F, Chen J H and Fan H Y 2013 Int. J. Thero. Phys. 013-1526-2
[3] Fan H Y 2006 Ann. Phys. 321 2116
[4] Barenco A 1995 Phys. Rev. A 52 3457
[5] Khaneja N 2001 Phys. Rev. A 63 032308
[6] Li H M and Xu X F 2012 Chin. Phys. B 21 024202
[7] Wang Y Y, Liu Z J, Liao Q H, Wang J C and Liu S T 2011 Chin. Phys. B 20 054201
[8] Hu L Y, Fan H Y and Zhang Z M 2013 Chin. Phys. B 22 034202
[9] Stoler D 1985 Opt. Acta. 32 345
[10] Berry M V 1984 Proc. R. Soc. A 392 45
[11] Barnett M 1998 J. Mod. Opt. 45 2201
[12] Popov d, Pop N and Davidovic M 2013 Physica Scripta T153 014051
[13] Gardiner C and Zoller P 2000 Quantum Noise (Berlin: Springer)
[14] Drummond P D and Gardiner C W 1991 Phys. Lett. A 161 1
[15] Takahashi Y and Umezawa H 1975 Collecive Phenomena 2 55
[16] Fan H Y and Fan Y 1998 Phys. Lett. A 246 242
[17] Buzek V 1990 J. Mod. Opt. 37 303
[18] Fan H Y 1991 Phys. Lett. A 161 1
[19] Fan H Y and Weng H G 1992 Chin. J. Quan. Electro. 9 213
[1] Wigner function for squeezed negative binomial state and evolution of density operator for amplitude decay
Heng-Yun Lv(吕恒云), Ji-Suo Wang(王继锁), Xiao-Yan Zhang(张晓燕), Meng-Yan Wu(吴孟艳), Bao-Long Liang(梁宝龙), Xiang-Guo Meng(孟祥国). Chin. Phys. B, 2019, 28(9): 090302.
[2] Kraus operator solutions to a fermionic master equation describing a thermal bath and their matrix representation
Xiang-Guo Meng(孟祥国), Ji-Suo Wang(王继锁), Hong-Yi Fan(范洪义), Cheng-Wei Xia(夏承魏). Chin. Phys. B, 2016, 25(4): 040302.
[3] New approach for deriving the exact time evolution of density operator for diffusive anharmonic oscillator and its Wigner distribution function
Meng Xiang-Guo (孟祥国), Wang Ji-Suo (王继锁), Liang Bao-Long (梁宝龙). Chin. Phys. B, 2013, 22(3): 030307.
[4] A new finite-dimensional thermal coherent state and its Wigner distribution function
Meng Xiang-Guo(孟祥国), Wang Ji-Suo(王继锁), and Liang Bao-Long(梁宝龙) . Chin. Phys. B, 2011, 20(1): 014204.
[5] Solving nonlinear master equation describing quantum damping by virtue of the entangled state representation
Fan Hong-Yi(范洪义), Ren Gang(任刚), Hu Li-Yun(胡利云), and Jiang Nian-Quan(姜年权). Chin. Phys. B, 2010, 19(11): 114206.
No Suggested Reading articles found!