Please wait a minute...
Chin. Phys. B, 2014, Vol. 23(3): 034601    DOI: 10.1088/1674-1056/23/3/034601
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

A three-dimensional Eulerian method for the numerical simulation of high-velocity impact problems

Wu Shi-Yu (吴士玉)a, Liu Kai-Xin (刘凯欣)a b, Chen Qian-Yi (陈千一)a
a LTCS and Department of Mechanics and Engineering Science, College of Engineering, Peking University, Beijing 100871, China;
b Center for Applied Physics and Technology, Peking University, Beijing 100871, China
Abstract  In the present paper, a three-dimensional (3D) Eulerian technique for the 3D numerical simulation of high-velocity impact problems is proposed. In the Eulerian framework, a complete 3D conservation element and solution element scheme for conservative hyperbolic governing equations with source terms is given. A modified ghost fluid method is proposed for the treatment of the boundary conditions. Numerical simulations of the Taylor bar problem and the ricochet phenomenon of a sphere impacting a plate target at an angle of 60° are carried out. The numerical results are in good agreement with the corresponding experimental observations. It is proved that our computational technique is feasible for analyzing 3D high-velocity impact problems.
Keywords:  three-dimensional numerical simulation      conservation element and solution element (CE/SE) method      ghost fluid method      high-velocity impact  
Received:  12 September 2013      Revised:  23 July 2013      Accepted manuscript online: 
PACS:  46.15.-x (Computational methods in continuum mechanics)  
  62.20.mm (Fracture)  
  64.30.Ef (Equations of state of pure metals and alloys)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 10732010, 10972010, and 11332002).
Corresponding Authors:  Liu Kai-Xin     E-mail:  kliu@pku.edu.cn

Cite this article: 

Wu Shi-Yu (吴士玉), Liu Kai-Xin (刘凯欣), Chen Qian-Yi (陈千一) A three-dimensional Eulerian method for the numerical simulation of high-velocity impact problems 2014 Chin. Phys. B 23 034601

[1] Goldsmith W 1999 Int. J. Impact Eng. 22 95
[2] Anderson C E 1987 Int. J. Impact Eng. 5 33
[3] Ma S, Zhang X, Lian Y P and Zhou X 2009 Cmes. Comp. Model. Eng. 39 101
[4] Udaykumar H S, Tran L, Belk D M and Vanden K J 2003 J. Comput. Phys. 186 136
[5] Tran L B and Udaykumar H S 2004 J. Comput. Phys. 193 469
[6] Enright D, Fedkiw R, Ferziger J and Mitchell I 2002 J. Comput. Phys. 183 83
[7] Kapahi A, Sambasivan S and Udaykumar H S 2013 J. Comput. Phys. 241 308
[8] Sambasivan S, Kapahi A and Udaykumar H S 2013 J. Comput. Phys. 235 334
[9] Barton P T, Deiterding R, Meiron D and Pullin D 2013 J. Comput. Phys. 240 76
[10] Wang J T, Liu K X and Zhang D L 2009 Comput. Fluids 38 544
[11] Chang S C 1995 J. Comput. Phys. 119 295
[12] Chang S C, Wang X Y and Chow C Y 1999 J. Comput. Phys. 156 89
[13] Chen Q Y, Wang J T and Liu K X 2010 J. Comput. Phys. 229 7503
[14] Chen Q Y and Liu K X 2011 Chin. Phys. Lett. 28 064602
[15] Fedkiw R P, Aslam T, Merriman B and Osher S 1999 J. Comput. Phys. 152 457
[16] Sambasivan S and Udaykumar H S 2009 AIAA 47 2907
[17] Sambasivan S and Udaykumar H S 2009 AIAA 47 2923
[18] Liu T G, Khoo B C and Yeo K S 2003 J. Comput. Phys. 190 651
[19] Barton P T and Drikakis D 2010 J. Comput. Phys. 229 5518
[20] Chen Q Y and Liu K X 2012 Comput. Fluids 56 92
[21] Backman M E and Finnegan S A 1976 Naval Weapons Center
[22] Johnson G R and Cook W H 1983 7th Int. Symp. on Ballistics (Hague, Netherlands)
[23] Shen H, Liu K X and Zhang D L 2011 Chin. Phys. Lett. 28 124705
[24] Osher S and Fedkiw R P 2001 J. Comput. Phys. 169 463
[25] Paik S H, Moon J, Kim S J and Lee M 2006 Computers & Structures 84 732
[26] Hu W, Yao L G and Hua Z Z 2007 Engineering Analysis with Boundary Elements 31 326
[27] Yue C X, Liu X L, Jia D K, Ji S Y and Zhai Y S 2009 Advanced Materials Research 69–70 11
[28] Lesuer D R 2000 FAA report DOT/FAA/AR-00/25
[1] Single-event response of the SiGe HBT in TCAD simulations and laser microbeam experiment
Li Pei (李培), Guo Hong-Xia (郭红霞), Guo Qi (郭旗), Zhang Jin-Xin (张晋新), Xiao Yao (肖尧), Wei Ying (魏莹), Cui Jiang-Wei (崔江维), Wen Lin (文林), Liu Mo-Han (刘默寒), Wang Xin (王信). Chin. Phys. B, 2015, 24(8): 088502.
No Suggested Reading articles found!