Please wait a minute...
Chin. Phys. B, 2013, Vol. 22(12): 125202    DOI: 10.1088/1674-1056/22/12/125202
PHYSICS OF GASES, PLASMAS, AND ELECTRIC DISCHARGES Prev   Next  

Determinations of plasma density and decay time in the hollow cathode discharge by microwave transmission

Zhang Lin (张林), He Feng (何锋), Li Shi-Chao (李世超), Ouyang Ji-Ting (欧阳吉庭)
School of Physics, Beijing Institute of Technology, Beijing 100081, China
Abstract  The microwave (MW) transmission method is employed to measure both the plasma density and the plasma decay time in the hollow cathode discharge (HCD) in argon at low pressure. The plasma density in DC-driven or pulsed HCD is on the order of 1012 cm-3, which can block the X-band MW effectively. In the case of pulsed HCD, the MW transmittance shows the same waveform as the pulsed current during the rising edge if the driving frequency is low, but with a longer delay during the falling edge. The MW transmittance reaches a constant low level when the driving frequency is high enough. The plasma decay time in the HCD system is measured to be about 100 μs around a pressure of 120 Pa. The ambipolar diffusion is considered to be the major mechanism in the decay process.
Keywords:  hollow cathode discharge      plasma density      plasma decay      microwave transmission  
Received:  26 February 2013      Revised:  25 April 2013      Accepted manuscript online: 
PACS:  52.80.Hc (Glow; corona)  
  52.70.-m (Plasma diagnostic techniques and instrumentation)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 11005009).
Corresponding Authors:  Ouyang Ji-Ting     E-mail:  jtouyang@bit.edu.cn

Cite this article: 

Zhang Lin (张林), He Feng (何锋), Li Shi-Chao (李世超), Ouyang Ji-Ting (欧阳吉庭) Determinations of plasma density and decay time in the hollow cathode discharge by microwave transmission 2013 Chin. Phys. B 22 125202

[1] Zhao J, Kang N and Xu J R 1996 Chin. Phys. Lett. 13 305
[2] Baggio-Scheid V H, Neri J W and de Vasconcelos G 2001 Surf. Coat. Tech. 146 469
[3] Zhang L, Zhang H X, Yang X Z, Fang C H, Qiao B and Wang L 2003 Chin. Phys. Lett. 20 1984
[4] Brunatto S F and Muzart J L R 2007 J. Phys. D.: Appl. Phys. 40 3937
[5] Jacobsen H, Quenzer H J, Wagner B, Ortner K and Jung T 2007 Sensor Actuat. A-Phys. 135 23
[6] Mott-Smith H M and Langmuir I 1926 Phys. Rev. 28 727
[7] Hopwood J, Guarnieri C R, Whitehair S J and Cuomo J J 1993 J. Vac. Sci. Technol. A 11 152
[8] Kar R, Barve S A, Singh S B, Barve D N, Chand N and Patil D S 2010 Vacuum 85 151
[9] Shirakawa T and Sugai H 1993 Jpn. J. Appl. Phys., Part 1 32 5129
[10] Ahn T H, Nakamura K and Sugai H 1995 Jpn. J. Appl. Phys., Part 2 34 L1405
[11] Kokura H, Nakamura K, Ghanashev I P and Sugai H 1999 Jpn. J. Appl. Phys., Part 1 38 5262
[12] Xu J Z, Shi J J, Zhang J, Zhang Q, Keji N and Hideo S 2010 Chin. Phys. B 19 075206
[13] Li S, Ouyang J T and He F 2010 Chin. Phys. Lett. 27 065201
[14] Ouyang J, Cao J, Li S, Peng Z, Li W and Ren W 2010 IEEE Electron Dev. Lett. 31 1491
[15] Yang J J 1983 Gas Discharge (Beijing: Science Press) pp. 65–68 (in Chinese)
[16] Von Engel A 1983 Electric Plasmas: Their Nature and Uses (London and New York: Taylor & Francis Ltd) pp. 78–81
[17] Bogaerts A and Gijbels R 1999 J. Appl. Phys. 86 4124
[18] Gould R J 1978 Astrophys. J. 219 250
[19] Fridman A 2008 Plasma Chemistry (Cambridge: Cambridge University Press) pp. 22–27
[1] Numerical study of physical properties of resistive wall modes in tokamaks
Xia Xin-Nian (夏新念), Liu Yue (刘悦), Liu Chao (刘超), He Yu-Ling (何玉玲), Xia Guo-Liang (夏国良). Chin. Phys. B, 2013, 22(5): 055203.
[2] Characterisation of the plasma density with two artificial neural network models
Wang Teng (王腾), Gao Xiang-Dong (高向东), Li Wei (李炜). Chin. Phys. B, 2010, 19(7): 070505.
[3] Calculation of incident ion distribution in a rectangular hollow cathode in magnetic field
Fang Tong-Zhen (房同珍), Zhang Long (张龙), Wang Long (王龙). Chin. Phys. B, 2005, 14(7): 1423-1427.
No Suggested Reading articles found!