Please wait a minute...
Chin. Phys. B, 2012, Vol. 21(11): 114102    DOI: 10.1088/1674-1056/21/11/114102
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

Highly efficient Cherenkov radiation generation in the irregular point of hollow-core photonic crystal fiber

Shen Xiang-Wei (申向伟)a, Yuan Jin-Hui (苑金辉)a, Sang Xin-Zhu (桑新柱)a, Yu Chong-Xiu (余重秀)a, Rao Lan (饶兰)a, Xia Min (夏民)a, Han Ying (韩颖)b, Xia Chang-Ming (夏长明)b, Hou Lan-Tian (侯蓝田 )b
a State Key Laboratory of Information Photonics and Optical Communications,Beijing University of Posts & Telecommunications, Beijing 100876, China;
b Institute of Infrared Optical Fibers & Sensors, Qinhuangdao 066004, China
Abstract  Highly efficient Cherenkov radiations (CRs) are generated by the soliton self-frequency shift (SSFS) in the irregular point of a hollow-core photonic crystal fiber (HC-PCF) in our laboratory. The impacts of pump power and wavelength on the CR are investigated, and the corresponding nonlinear processes are discussed. When the average power of the 120 fs pump pulse increases from 500 mW to 700 mW, the Raman soliton shifts from 2210 nm to 2360 nm, the output power of the CRs increases by 2.3 times, the maximum output power ratio of the CRs at 539 nm to that of the residual pump is calculated to be 24.32:1, the width of the output optical spectrum at the visible wavelength broadens from 35 nm to 62 nm, and the conversion efficiency η of the CR in the experiment can be above 32%.
Keywords:  Cherenkov radiation      hollow-core photonic crystal fiber      soliton self-frequency shift  
Received:  22 March 2012      Revised:  23 May 2012      Accepted manuscript online: 
PACS:  41.60.Bq (Cherenkov radiation)  
  42.65.Tg (Optical solitons; nonlinear guided waves)  
  42.70.Mp (Nonlinear optical crystals)  
  42.70.Qs (Photonic bandgap materials)  
Fund: Project supported by the National Basic Research Program of China (Grant Nos. 2010CB327605 and 2010CB328300), the Fundamental Research Funds for the Central Universities, China (Grant Nos. 2011RC0309 and 2011RC008), and the Specialized Research Fund for the Doctoral Program of Beijing University of Posts and Telecommunications, China (Grant No. CX201023).
Corresponding Authors:  Shen Xiang-Wei     E-mail:  xswen_1212@163.com

Cite this article: 

Shen Xiang-Wei (申向伟), Yuan Jin-Hui (苑金辉), Sang Xin-Zhu (桑新柱), Yu Chong-Xiu (余重秀), Rao Lan (饶兰), Xia Min (夏民), Han Ying (韩颖), Xia Chang-Ming (夏长明), Hou Lan-Tian (侯蓝田 ) Highly efficient Cherenkov radiation generation in the irregular point of hollow-core photonic crystal fiber 2012 Chin. Phys. B 21 114102

[1] Cregan R F, Mangan B J, Knight J C, Birks T A, Russell P St J, Roberts P J and Allan D C 1999 Science 285 1537
[2] Smith C M, Venkataraman N, Gallagher M T, Muller D, West J A, Borrelli N F, Allan D C and Koch K W 2003 Nature 424 657
[3] Hong K H, Hou B, Nees J A, Power E and Mourou G A 2005 Applied Physics B: Lasers and Optics 81 447
[4] Hauri C P, Kornelis W, Helbing F W, Heinrich A, Couairon A, Mysyrowicz A, Biegert J and Keller U 2004 Applied Physics B: Lasers and Optics 79 673
[5] Yan M, Shum P and Hu J 2005 Opt. Lett. 30 465
[6] Yeh P and Yariv A 1978 J. Opt. Soc. Am. 68 1196
[7] Li S G, Hou L T, Ji Y L and Zhou G Y 2003 Chin. Phys. Lett. 20 1300
[8] Shen X W, Yu C X, Sang X Z, Yuan J H, Han Y, Xia C M, Hou L T, Rao L, Xia M and Yin X L 2012 Acta Phys. Sin. 61 044203 (in Chinese)
[9] Dupriez P, Poletti F, Horak P, Petrovich M N, Jeong Y, Nilsson J, Richardson D J and Payne D N 2007 Opt. Exp. 15 3729
[10] Guo Y, Ruan S C, Yan P G, Li I L and Yu Y Q 2010 Chin. Phys. Lett. 27 044212
[11] Tartara L, Cristiani I and Degiorgio V 2003 Applied Physics B: Lasers and Optics 77 307
[12] Ishii N, Teisset C Y, Köhler S, Serebryannikov E E, Fuji T, Metzger T, Krausz F, Baltuska A and Zheltikov A M 2006 Phys. Rev. E 74 036617
[13] Wang X Y, Li S G, Liu S, Yin G B and Li J S 2012 Chin. Phys. B 21 054220
[14] Yuan J H, Sang X Z, Yu C X, Xin X J, Shen X W, Zhang J L, Zhou G Y, Li S G and Hou L T 2011 Chin. Phys. B 20 054210
[15] Yuan J H, Sang X Z, Yu C X, Xin X J, Li S G, Zhou G Y and Hou L T 2010 Chin. Phys. B 19 074218
[16] Yuan J H, Sang X Z, Yu C X, Xin X J, Zhou G Y, Li S G and Hou L T 2011 Applied Physics B: Lasers and Optics 104 117
[17] Yuan J H, Sang X Z, Yu C X, Han Y, Zhou G Y, Li S G and Hou L T 2011 J. Lightw. Technol. 29 2920
[18] Yuan J H, Sang X Z, Yu C X, Li S G, Zhou G Y and Hou L T 2010 J. Quantum Electron. 42 728
[19] Husakou A V and Herrmann J 2001 Phys. Rev. Lett. 87 203901
[20] Cristiani I, Tediosi R, Tartara L and Degiorgio V 2004 Opt. Exp. 12 124
[21] Tran T X and Biancalana F 2009 Phys. Rev. A 79 065802
[22] Peng J H, Sokolov A V, Benabid F, Biancalana F, Light P S, Couny F and Roberts P J 2010 Phys. Rev. A 81 031803(R)
[23] Yuan J H, Sang X Z, Yu C X, Han Y, Zhou G Y, Li S G and Hou L T 2011 IEEE Photon. Technol. Lett. 23 786
[24] Chang G Q, Chen L J and Kärtner F X 2010 Opt. Lett. 35 2361
[25] Hadley G R 1998 J. Lightw. Technol. 46 34
[1] Cherenkov terahertz radiation from Dirac semimetals surface plasmon polaritons excited by an electron beam
Tao Zhao(赵陶), Zhenhua Wu(吴振华). Chin. Phys. B, 2020, 29(3): 034101.
[2] Broadband tunable Raman soliton self-frequency shift to mid-infrared band in a highly birefringent microstructure fiber
Wei Wang(王伟), Xin-Ying Bi(毕新英), Jun-Qi Wang(王珺琪), Yu-Wei Qu(屈玉玮), Ying Han(韩颖), Gui-Yao Zhou(周桂耀), Yue-Feng Qi(齐跃峰). Chin. Phys. B, 2016, 25(7): 074206.
[3] Strip silicon waveguide for code synchronization in all-optical analog-to-digital conversion based on a lumped time-delay compensation scheme
Sha Li(李莎), Zhi-Guo Shi(石志国), Zhe Kang(康哲), Chong-Xiu Yu(余重秀), Jian-Ping Wang(王建萍). Chin. Phys. B, 2016, 25(4): 044210.
[4] Optimizational 6-bit all-optical quantization with soliton self-frequency shift and pre-chirp spectral compression techniques based on photonic crystal fiber
Li Sha (李莎), Wang Jian-Ping (王建萍), Kang Zhe (康哲), Yu Chong-Xiu (余重秀). Chin. Phys. B, 2015, 24(8): 084212.
[5] Code synchronization based on lumped time-delay compensation scheme with a linearly chirped fiber Bragg grating in all-optical analog-to-digital conversion
Wang Tao (王涛), Kang Zhe (康哲), Yuan Jin-Hui (苑金辉), Tian Ye (田野), Yan Bin-Bin (颜玢玢), Sang Xin-Zhu (桑新柱), Yu Chong-Xiu (余重秀). Chin. Phys. B, 2014, 23(10): 104212.
[6] Six-bit all-optical quantization using photonic crystal fiber with soliton self-frequency shift and pre-chirp spectral compression techniques
Kang Zhe (康哲), Yuan Jin-Hui (苑金辉), Li Sha (李莎), Xie Song-Lin (解松霖), Yan Bin-Bin (颜玢玢), Sang Xin-Zhu (桑新柱), Yu Chong-Xiu (余重秀). Chin. Phys. B, 2013, 22(11): 114211.
[7] Polarization-dependent efficient Cherenkov radiation at visible wavelengths in hollow-core photonic crystal fiber cladding
Shen Xiang-Wei (申向伟), Yuan Jin-Hui (苑金辉), Sang Xin-Zhu (桑新柱), Yu Chong-Xiu (余重秀), Rao Lan (饶岚), Xia Min (夏民), Han Ying (韩颖), Xia Chang-Ming (夏长明), Hou Lan-Tian (侯蓝田), Wu Zhong-Chao (吴中超), He Xiao-Liang (何晓亮). Chin. Phys. B, 2013, 22(1): 014102.
[8] Ultra-violet and mid-infrared continuum generation by cross-phase modulation between red-shifted solitons and blue-shifted dispersive waves in a photonic crystal fiber
Shen Xiang-Wei(申向伟), Yuan Jin-Hui(苑金辉), Sang Xin-Zhu(桑新柱), Yu Chong-Xiu(余重秀), Rao Lan(饶岚), Xin Xiang-Jun(忻向军), Xia Min(夏民), Han Ying(韩颖), Xia Chang-Ming(夏长明), and Hou Lan-Tian(侯蓝田) . Chin. Phys. B, 2012, 21(7): 074209.
[9] Polarisation-sensitive four-wave mixing and soliton self-frequency shift effect in the highly birefringent photonic crystal fibre
Yuan Jin-Hui (苑金辉), Sang Xin-Zhu (桑新柱), Yu Chong-Xiu (余重秀), Xin Xiang-Jun (忻向军), Li Shu-Guang (李曙光), Zhou Gui-Yao (周桂耀), Hou Lan-Tian (侯蓝田). Chin. Phys. B, 2010, 19(7): 074218.
[10] Modification of spontaneous emission rate of micrometer-sized light sources using hollow-core photonic crystal fibers
Lu Jiao-Hua(卢娇华), Meng Zi-Ming(蒙自明), Liu Hai-Ying(刘海英), Feng Tian-Hua(冯天华), Dai Qiao-Feng(戴峭峰), Wu Li-Jun(吴立军), Guo Qi(郭旗), Hu Wei(胡巍), and Lan Sheng(兰胜). Chin. Phys. B, 2009, 18(10): 4333-4338.
No Suggested Reading articles found!