Please wait a minute...
Chin. Phys. B, 2012, Vol. 21(11): 117501    DOI: 10.1088/1674-1056/21/11/117501
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Charge oscillation and many-body effect in triangular quantum dots

Xiong Yong-Chen (熊永臣), Wang Wei-Zhong (王为忠 )
Department of Physics, and Key Laboratory of Artificial Micro- and Nano-structures of Ministry of Education,Wuhan University, Wuhan 430072, China
Abstract  We study the charge oscillation in the triangular quantum dots symmetrically coupled to the leads. A strong charge oscillation is observed even for a very small level difference. We attribute this oscillation behavior to the many-body effect in the strongly correlated system instead of the physical scenarios based on the mean-field approach in the previous works for the two-level dot. The level difference induces the difference of the occupations between different dots, while the symmetry of the many-body states favors the homogeneous distribution of the charge density on the three dots. The interplay of these two factors results in the charge oscillation.
Keywords:  charge oscillation      many-body effect      triangular quantum dots  
Received:  01 April 2012      Revised:  18 May 2012      Accepted manuscript online: 
PACS:  75.20.Hr (Local moment in compounds and alloys; Kondo effect, valence fluctuations, heavy fermions)  
  73.63.-b (Electronic transport in nanoscale materials and structures)  
  73.23.-b (Electronic transport in mesoscopic systems)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11174228 and 10874132).
Corresponding Authors:  Wang Wei-Zhong     E-mail:  wzwang@whu.edu.cn

Cite this article: 

Xiong Yong-Chen (熊永臣), Wang Wei-Zhong (王为忠 ) Charge oscillation and many-body effect in triangular quantum dots 2012 Chin. Phys. B 21 117501

[1] Park J, Pasupathy A N, Goldsmith J I, Chang C, Yaish Y, Petta J R, Rinkoski M, Sethna J P, Abruña H D, McEuen P L and Ralph D C 2002 Nature 417 723
[2] Field M, Smith C G, Pepper M, Ritchie D A, Frost J E F, Jones G A C and Hasko D G 1993 Phys. Rev. Lett. 70 1311
[3] Leobandung E, Guo L and Chou S Y 1995 Appl. Phys. Lett. 67 7
[4] Jiang Z T 2010 Chin. Phys. B 19 077307
[5] Wen R, Zhang D P and Tian G S 2012 Chin. Phys. B 21 037401
[6] Girvin S M, Glazman L I, Jonson M, Penn D R and Stiles M D 1990 Phys. Rev. Lett. 64 3183
[7] Stafford C A and Sarma S D 1994 Phys. Rev. Lett. 72 3590
[8] Simmel F, Heinzel T and Wharam D A 1997 Europhys. Lett. 38 123
[9] Aleiner I L, Brouwer P W and Glazman L I 2002 Physics Reports 358 309
[10] Hackenbroich G, Heiss W D and Weidenmuller H A 1997 Phys. Rev. Lett. 79 127
[11] Silvestrov P G and Imry Y 2000 Phys. Rev. Lett. 85 2565
[12] Silvestrov P G and Imry Y 2001 Phys. Rev. B 65 035309
[13] König J and Gefen Y 2005 Phys. Rev. B 71 201308 (R)
[14] Berkovits R, Oppen F V and Gefen Y 2005 Phys. Rev. Lett. 94 076802
[15] Sindel M, Silva A, Oreg Y and Delft J V 2005 Phys. Rev. B 72 125316
[16] Field M, Smith C G, Pepper M, Ritchie D A, Frost J E F, Jones G A C and Hasko D G 1993 Phys. Rev. Lett. 70 1311
[17] Goldstein M, Berkovits R and Gefen Y 2010 Phys. Rev. Lett. 104 226805
[18] Schuster R, Buks E, Heiblum M, Mahalu D, Umansky V and Shtrikman H 1997 Nature 385 417
[19] Avinun-Kalish M, Heiblum M, Zarchin O, Mahalu D and Umansky V 2005 Nature 436 529
[20] Silva A, Oreg Y and Gefen Y 2002 Phys. Rev. B 66 195316
[21] Meden V and Marquardt F 2006 Phys. Rev. Lett. 96 146801
[22] Golosov D I and Gefen Y 2006 Phys. Rev. B 74 205316
[23] Karrasch C, Hecht T, Weichselbaum A, Oreg Y, Delft T V and Meden V 2007 Phys. Rev. Lett. 98 186802
[24] Goldstein M and Berkovits R 2007 New J. Phys. 9 118
[25] Goldstein M, Berkovits R, Gefen Y and Weidenmuller H A 2009 Phys. Rev. B 79 125307
[26] Lee H W and Kim S 2007 Phys. Rev. Lett. 98 186805
[27] Kashcheyevs V, Schiller A, Aharony A and Entin-Wohlman O 2007 Phys. Rev. B 75 115313
[28] Kashcheyevs V, Karrasch C, Hecht T, Weichselbaum A, Meden V and Schiller A 2009 Phys. Rev. Lett. 102 136805
[29] Mitchell A K, Jarrold T F and Logan D E 2009 Phys. Rev. B 79 085124
[30] Mitchell A K and Logan D E 2010 Phys. Rev. B 81 075126
[31] Kuzmenko T, Kikoin K and Avishai Y 2006 Phys. Rev. Lett. 96 046601
[32] Kuzmenko T, Kikoin K and Avishai Y 2006 Phys. Rev. B 73 235310
[33] Zitko R and Bonca J 2007 Phys. Rev. Lett. 98 047203
[34] Ingersent K, Ludwig A W W and Affleck I 2005 Phys. Rev. Lett. 95 257204
[35] Zitko R, Bonca J, Ramsak A and Rejec T 2006 Phys. Rev. B 73 153307
[36] Wang W Z 2007 Phys. Rev. B 76 115114
[37] Delgado F, Shim Y P, Korkusinski M, Gaudreau L, Studenikin S A, Sachrajda A S and Hawrylak P 2008 Phys. Rev. Lett. 101 226810
[38] Delgado F, Shim Y P, Korkusinski M, and Hawrylak P 2007 Phys. Rev. B 76, 115332
[39] Korkusinski M, Gimenez I P, Hawrylak P, Gaudreau L, Studenikin S A and Sachrajda A S 2007 Phys. Rev. B 75 115301
[40] Saraga D S and Loss D 2003 Phys. Rev. Lett. 90 166803
[41] Krishna-murthy H R, Wilkins J W, and Wilson K G 1980 Phys. Rev. B 21 1003
[42] Krishna-murthy H R, Wilkins J W, and Wilson K G 1980 Phys. Rev. B 21 1044
[1] Quantum phase transition and Coulomb blockade effect in triangular quantum dots with interdot capacitive and tunnel couplings
Xiong Yong-Chen (熊永臣), Wang Wei-Zhong (王为忠), Yang Jun-Tao (杨俊涛), Huang Hai-Ming (黄海铭). Chin. Phys. B, 2015, 24(2): 027501.
[2] A Lennard-Jones embedded-atom potential and its application to the study of melting
Wang Tun (王暾), Zhou Fu-Xin (周富信), Liu Yue-Wu (刘曰武). Chin. Phys. B, 2002, 11(2): 139-143.
No Suggested Reading articles found!