CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Prev
Next
|
|
|
Charge oscillation and many-body effect in triangular quantum dots |
Xiong Yong-Chen (熊永臣), Wang Wei-Zhong (王为忠 ) |
Department of Physics, and Key Laboratory of Artificial Micro- and Nano-structures of Ministry of Education,Wuhan University, Wuhan 430072, China |
|
|
Abstract We study the charge oscillation in the triangular quantum dots symmetrically coupled to the leads. A strong charge oscillation is observed even for a very small level difference. We attribute this oscillation behavior to the many-body effect in the strongly correlated system instead of the physical scenarios based on the mean-field approach in the previous works for the two-level dot. The level difference induces the difference of the occupations between different dots, while the symmetry of the many-body states favors the homogeneous distribution of the charge density on the three dots. The interplay of these two factors results in the charge oscillation.
|
Received: 01 April 2012
Revised: 18 May 2012
Accepted manuscript online:
|
PACS:
|
75.20.Hr
|
(Local moment in compounds and alloys; Kondo effect, valence fluctuations, heavy fermions)
|
|
73.63.-b
|
(Electronic transport in nanoscale materials and structures)
|
|
73.23.-b
|
(Electronic transport in mesoscopic systems)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11174228 and 10874132). |
Corresponding Authors:
Wang Wei-Zhong
E-mail: wzwang@whu.edu.cn
|
Cite this article:
Xiong Yong-Chen (熊永臣), Wang Wei-Zhong (王为忠 ) Charge oscillation and many-body effect in triangular quantum dots 2012 Chin. Phys. B 21 117501
|
[1] |
Park J, Pasupathy A N, Goldsmith J I, Chang C, Yaish Y, Petta J R, Rinkoski M, Sethna J P, Abruña H D, McEuen P L and Ralph D C 2002 Nature 417 723
|
[2] |
Field M, Smith C G, Pepper M, Ritchie D A, Frost J E F, Jones G A C and Hasko D G 1993 Phys. Rev. Lett. 70 1311
|
[3] |
Leobandung E, Guo L and Chou S Y 1995 Appl. Phys. Lett. 67 7
|
[4] |
Jiang Z T 2010 Chin. Phys. B 19 077307
|
[5] |
Wen R, Zhang D P and Tian G S 2012 Chin. Phys. B 21 037401
|
[6] |
Girvin S M, Glazman L I, Jonson M, Penn D R and Stiles M D 1990 Phys. Rev. Lett. 64 3183
|
[7] |
Stafford C A and Sarma S D 1994 Phys. Rev. Lett. 72 3590
|
[8] |
Simmel F, Heinzel T and Wharam D A 1997 Europhys. Lett. 38 123
|
[9] |
Aleiner I L, Brouwer P W and Glazman L I 2002 Physics Reports 358 309
|
[10] |
Hackenbroich G, Heiss W D and Weidenmuller H A 1997 Phys. Rev. Lett. 79 127
|
[11] |
Silvestrov P G and Imry Y 2000 Phys. Rev. Lett. 85 2565
|
[12] |
Silvestrov P G and Imry Y 2001 Phys. Rev. B 65 035309
|
[13] |
König J and Gefen Y 2005 Phys. Rev. B 71 201308 (R)
|
[14] |
Berkovits R, Oppen F V and Gefen Y 2005 Phys. Rev. Lett. 94 076802
|
[15] |
Sindel M, Silva A, Oreg Y and Delft J V 2005 Phys. Rev. B 72 125316
|
[16] |
Field M, Smith C G, Pepper M, Ritchie D A, Frost J E F, Jones G A C and Hasko D G 1993 Phys. Rev. Lett. 70 1311
|
[17] |
Goldstein M, Berkovits R and Gefen Y 2010 Phys. Rev. Lett. 104 226805
|
[18] |
Schuster R, Buks E, Heiblum M, Mahalu D, Umansky V and Shtrikman H 1997 Nature 385 417
|
[19] |
Avinun-Kalish M, Heiblum M, Zarchin O, Mahalu D and Umansky V 2005 Nature 436 529
|
[20] |
Silva A, Oreg Y and Gefen Y 2002 Phys. Rev. B 66 195316
|
[21] |
Meden V and Marquardt F 2006 Phys. Rev. Lett. 96 146801
|
[22] |
Golosov D I and Gefen Y 2006 Phys. Rev. B 74 205316
|
[23] |
Karrasch C, Hecht T, Weichselbaum A, Oreg Y, Delft T V and Meden V 2007 Phys. Rev. Lett. 98 186802
|
[24] |
Goldstein M and Berkovits R 2007 New J. Phys. 9 118
|
[25] |
Goldstein M, Berkovits R, Gefen Y and Weidenmuller H A 2009 Phys. Rev. B 79 125307
|
[26] |
Lee H W and Kim S 2007 Phys. Rev. Lett. 98 186805
|
[27] |
Kashcheyevs V, Schiller A, Aharony A and Entin-Wohlman O 2007 Phys. Rev. B 75 115313
|
[28] |
Kashcheyevs V, Karrasch C, Hecht T, Weichselbaum A, Meden V and Schiller A 2009 Phys. Rev. Lett. 102 136805
|
[29] |
Mitchell A K, Jarrold T F and Logan D E 2009 Phys. Rev. B 79 085124
|
[30] |
Mitchell A K and Logan D E 2010 Phys. Rev. B 81 075126
|
[31] |
Kuzmenko T, Kikoin K and Avishai Y 2006 Phys. Rev. Lett. 96 046601
|
[32] |
Kuzmenko T, Kikoin K and Avishai Y 2006 Phys. Rev. B 73 235310
|
[33] |
Zitko R and Bonca J 2007 Phys. Rev. Lett. 98 047203
|
[34] |
Ingersent K, Ludwig A W W and Affleck I 2005 Phys. Rev. Lett. 95 257204
|
[35] |
Zitko R, Bonca J, Ramsak A and Rejec T 2006 Phys. Rev. B 73 153307
|
[36] |
Wang W Z 2007 Phys. Rev. B 76 115114
|
[37] |
Delgado F, Shim Y P, Korkusinski M, Gaudreau L, Studenikin S A, Sachrajda A S and Hawrylak P 2008 Phys. Rev. Lett. 101 226810
|
[38] |
Delgado F, Shim Y P, Korkusinski M, and Hawrylak P 2007 Phys. Rev. B 76, 115332
|
[39] |
Korkusinski M, Gimenez I P, Hawrylak P, Gaudreau L, Studenikin S A and Sachrajda A S 2007 Phys. Rev. B 75 115301
|
[40] |
Saraga D S and Loss D 2003 Phys. Rev. Lett. 90 166803
|
[41] |
Krishna-murthy H R, Wilkins J W, and Wilson K G 1980 Phys. Rev. B 21 1003
|
[42] |
Krishna-murthy H R, Wilkins J W, and Wilson K G 1980 Phys. Rev. B 21 1044
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|