Please wait a minute...
Chin. Phys. B, 2012, Vol. 21(10): 109202    DOI: 10.1088/1674-1056/21/10/109202
GEOPHYSICS, ASTRONOMY, AND ASTROPHYSICS Prev   Next  

Propagation modeling of ocean-scattered low-elevation GPS signals for maritime tropospheric duct inversion

Zhang Jin-Peng (张金鹏)a, Wu Zhen-Sen (吴振森)a, Zhao Zhen-Wei (赵振维)b, Zhang Yu-Sheng (张玉生)b, Wang Bo (王波)c
a School of Science, Xidian University, Xi'an 710071, China;
b China Research Institute of Radio Wave Propagation, Qingdao 266107, China;
c Institute of Oceanographic Instrumentation, Qingdao 266001, China
Abstract  The maritime tropospheric duct is a low-altitude anomalous refractivity structure over the ocean surface, and it can significantly affect the performance of many shore-based/shipboard radar and communication systems. We propose the idea that maritime tropospheric ducts can be retrieved from ocean forward-scattered low-elevation global positioning system (GPS) signals. Retrieval is accomplished by matching the measured power patterns of the signals to those predicted by the forward propagation model as a function of the modified refractivity profile. On the basis of a parabolic equation method and bistatic radar equation, we develop such a forward model for computing the trapped propagation characteristics of an ocean forward-scattered GPS signal within a tropospheric duct. A new GPS scattering initial field is defined for this model to start the propagation modeling. A preliminary test on the performance of this model is conducted using measured data obtained from a 2009-experiment in the South China Sea. Results demonstrate that this model can predict GPS propagation characteristics within maritime tropospheric ducts and serve as a forward model for duct inversion.
Keywords:  global positioning system      ocean surface scattering      propagation modeling      tropospheric duct inversion  
Received:  28 February 2012      Revised:  14 May 2012      Accepted manuscript online: 
PACS:  92.60.Cc (Ocean/atmosphere interactions, air/sea constituent fluxes)  
  41.20.Jb (Electromagnetic wave propagation; radiowave propagation)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 61172031 and 41175012).
Corresponding Authors:  Wu Zhen-Sen     E-mail:  wuzhs@mail.xidian.edu.cn

Cite this article: 

Zhang Jin-Peng (张金鹏), Wu Zhen-Sen (吴振森), Zhao Zhen-Wei (赵振维), Zhang Yu-Sheng (张玉生), Wang Bo (王波) Propagation modeling of ocean-scattered low-elevation GPS signals for maritime tropospheric duct inversion 2012 Chin. Phys. B 21 109202

[1] Hall M P M 1979 Effects of the Troposphere on Radio Communication (London: Peter Peregrinus)
[2] Turton J D, Bennetts D A and Farmer S F G 1988 Meteorol. Mag. 117 245
[3] Rowland J R, Konstanzer G C, Neves M R, Miller R E, Meyer J H and Rottier J R 1996 Proceedings of the Battlespace Atmospherics Conference, December, 1996, San Diego, USA, p. 155
[4] Richter J H 1994 Proceedings of the International Geoscience and Remote Sensing Symposium, August 8-12, 1994. Pasadena, USA, p. 381
[5] Haack T and Burk S D 2001 J. Appl. Meteorol. 40 673
[6] Kuttler J R and Dockery G D 1991 Radio Sci. 26 381
[7] Levy M F 2000 Parabolic Equation Methods for Electromagnetic Wave Propagation (London: The Institution of Electrical Engineers)
[8] Rogers L T, Hattan C P and Stapleton J K 2000 Radio Sci. 35 955
[9] Gerstoft P, Rogers L T, Krolik J L and Hodgkiss W S 2003 Radio Sci. 38 8053
[10] Yardim C, Gerstoft P and Hodgkiss W S 2006 IEEE Trans. Antennas Propag. 54 1318
[11] Huang S X, Zhao X F and Sheng Z 2009 Chin. Phys. B 18 5084
[12] Zhao X F, Huang S X, Xiang J and Shi W L 2011 Chin. Phys. B 20 099201
[13] Sheng Z and Huang S X 2010 Acta Phys. Sin. 59 1734 (in Chinese)
[14] Zhao X F, Huang S X and Sheng Z 2010 Chin. Phys. B 19 049201
[15] Zhao X F and Huang S X 2011 Chin. Phys. B 20 029201
[16] Karimian A, Yardim C, Gerstoft P, Hodgkiss W S and Barrios A E 2011 Radio Sci. 46 RS6013
[17] Martín-Neira M 1993 ESA Journal 17 331
[18] Garrison J L, Katzberg S J and Hill M I 1998 Geophys. Res. Lett. 25 2257
[19] Lowe S T, Zuffada C, Chao Y, Kroger P, Young L E and LaBrecque J L 2002 Geophys. Res. Lett. 29 1375
[20] Marchan-Hernandez J F, Valencia E, Rodriguez-Alvarez N, Ramos-Perez I, Bosch-Lluis X, Camps A, Eugenio F and Marcello J 2010 IEEE Geosci. Remote Sens. Lett. 7 621
[21] Komjathy A, Zavorotny V U, Axelrad P, Born G H and Garrison J L 2000 Remote Sens. Environ. 73 162
[22] Garrison J L, Komjathy A, Zavorotny V U and Katzberg S J 2002 IEEE Trans. Geosci. Remote Sens. 40 50
[23] Anderson K D 1994 Proceedings of AGARD Conference 567 p. 1
[24] Lowry A R, Rocken C, Sokolovskiy S V and Anderson K D 2002 Radio Sci. 37 1041
[25] Paulus R A 1990 IEEE Trans. Antennas Propag. 38 1765
[26] Rogers L T 1997 Radio Sci. 32 79
[27] Dockery G D and Kuttler J R 1996 IEEE Trans. Antennas Propag. 44 1592
[28] Miller A R, Brown R M and Vegh E 1984 IEE Proc. Microwaves Opt. Antennas 131 114
[29] Beckmann P and Spizzichino A 1987 The Scattering of Electromagnetic Waves from Rough Surfaces (Norwood: Artech House)
[30] Thorsos E I 1988 J. Acoust. Soc. Am. 83 78
[31] Yang C, Guo L X and Wu Z S 2010 Chin. Phys. B 19 054101
[32] Tsang L, Kong J A, Ding K H and Ao C O 2001 Scattering of Electromagnetic Waves: Numerical Simulations (New York: John Wiley & Sons, Inc.)
[33] Wang B, Wu Z S, Zhao Z W and Wang H G 2011 IEEE Geosci. Remote Sens. Lett. 8 587
[1] Monitoring of the ducting by a ground-based GPS receiver
Sheng Zheng (盛峥), Fang Han-Xian (方涵先). Chin. Phys. B, 2013, 22(2): 029301.
No Suggested Reading articles found!