Please wait a minute...
Chin. Phys. B, 2012, Vol. 21(8): 080201    DOI: 10.1088/1674-1056/21/8/080201
GENERAL   Next  

A type of conserved quantity of Mei symmetry of Nielsen equations for a holonomic system

Cui Jin-Chao (崔金超)a b, Han Yue-Lin (韩月林)a, Jia Li-Qun (贾利群 )a
a School of Science, Jiangnan University, Wuxi 214122, China;
b School of Astronautics, Beijing Institute of Technology, Beijing 100081, China
Abstract  A type of structural equation and conserved quantity which are directly induced by Mei symmetry of Nielsen equations for a holonomic system are studied. Under the infinitesimal transformation of groups, from the definition and the criterion of Mei symmetry, a type of structural equation and conserved quantity for the system by proposition 2 are obtained, and the inferences in two special cases are given. Finally, an example is given to illustrate the application of the results.
Keywords:  Nielsen equation      Mei symmetry      structural equation      conserved quantity  
Received:  05 January 2012      Revised:  12 January 2012      Accepted manuscript online: 
PACS:  02.20.Sv (Lie algebras of Lie groups)  
  11.30.-j (Symmetry and conservation laws)  
  45.20.Jj (Lagrangian and Hamiltonian mechanics)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11142014 and 61178032).
Corresponding Authors:  Jia Li-Qun     E-mail:  jlq0000@163.com

Cite this article: 

Cui Jin-Chao (崔金超), Han Yue-Lin (韩月林), Jia Li-Qun (贾利群 ) A type of conserved quantity of Mei symmetry of Nielsen equations for a holonomic system 2012 Chin. Phys. B 21 080201

[1] Bloch A M, Baillieul J, Crouch P and Marsden J 2003 Nonholonomic Mechanics and Control (London: Springer)
[2] Vagner V V 1941 Trndy Sem. Vektor. Tenzor. Anal. 5 173 (in Russian)
[3] Etayo F, Santamaria R and Vacaru S I 2005 J. Math. Phys. 46 032901
[4] Bloch A M, Krishnaprasad P S, Marsden J E and Murray R M 1996 Arch. Rat. Mech. Anal. 136 21
[5] Mei F X 1991 Advanced Analytical Mechanics (Beijing: Beijing Institute of Technology Press) (in Chinese)
[6] Luo S K 2007 Acta Phys. Sin. 56 5580 (in Chinese)
[7] Cai J L 2010 Chin. J. Phys. 48 728
[8] Jiang W A, Li L, Li Z J and Luo S K 2012 Nonlinear Dynam. 67 1075
[9] Jia L Q, Xie Y L, Zhang Y Y and Yang X F 2010 Chin. Phys. B 19 110301
[10] Zhang Y and Mei F X 2000 Chin. Sci. Bull. 45 135
[11] Cai J L 2010 Int. J. Theor. Phys. 49 201
[12] Cui J C, Jia L Q and Zhang Y Y 2009 Commun. Theor. Phys. 52 7
[13] Jiang W A and Luo S K 2012 Nonlinear Dynam. 67 475
[14] Cai J L 2008 Acta Phys. Sin. 57 5369 (in Chinese)
[15] Li Z J, Jiang W A and Luo S K 2012 Nonlinear Dynam. 67 445
[16] Yang X F, Sun X T, Wang X X, Zhang M L and Jia L Q 2011 Acta Phys. Sin. 60 111101 (in Chinese)
[17] Cui J C, Zhang Y Y and Jia L Q 2009 Chin. Phys. B 18 1731
[18] Jiang W A and Luo S K 2011 Acta Phys. Sin. 60 060201 (in Chinese)
[19] Wang S Y and Mei F X 2001 Chin. Phys. 10 373
[20] Fang J H, Xue Q Z and Zhao S Q 2002 Acta Phys. Sin. 51 2183 (in Chinese)
[21] Cai J L 2009 Acta Phys. Sin. 58 22 (in Chinese)
[22] Xie Y L, Jia L Q and Yang X F 2011 Acta Phys. Sin. 60 030201 (in Chinese)
[23] Fang J H 2009 Acta Phys. Sin. 58 3617 (in Chinese)
[24] Xu X J, Mei F X and Qin M C 2004 Acta Phys. Sin. 53 4021 (in Chinese)
[1] Exploring fundamental laws of classical mechanics via predicting the orbits of planets based on neural networks
Jian Zhang(张健), Yiming Liu(刘一鸣), and Zhanchun Tu(涂展春). Chin. Phys. B, 2022, 31(9): 094502.
[2] Noether symmetry and conserved quantity for dynamical system with non-standard Lagrangians on time scales
Jing Song(宋静), Yi Zhang(张毅). Chin. Phys. B, 2017, 26(8): 084501.
[3] Non-Noether symmetries of Hamiltonian systems withconformable fractional derivatives
Lin-Li Wang (王琳莉) and Jing-Li Fu(傅景礼). Chin. Phys. B, 2016, 25(1): 014501.
[4] Symmetries and variational calculationof discrete Hamiltonian systems
Xia Li-Li (夏丽莉), Chen Li-Qun (陈立群), Fu Jing-Li (傅景礼), Wu Jing-He (吴旌贺). Chin. Phys. B, 2014, 23(7): 070201.
[5] Impact of user influence on information multi-step communication in micro-blog
Wu Yue (吴越), Hu Yong (胡勇), He Xiao-Hai (何小海), Deng Ken (邓垦). Chin. Phys. B, 2014, 23(6): 060101.
[6] Noether symmetry and conserved quantity for a Hamilton system with time delay
Jin Shi-Xin (金世欣), Zhang Yi (张毅). Chin. Phys. B, 2014, 23(5): 054501.
[7] Noether's theorems of a fractional Birkhoffian system within Riemann–Liouville derivatives
Zhou Yan (周燕), Zhang Yi (张毅). Chin. Phys. B, 2014, 23(12): 124502.
[8] Lie symmetry theorem of fractional nonholonomic systems
Sun Yi (孙毅), Chen Ben-Yong (陈本永), Fu Jing-Li (傅景礼). Chin. Phys. B, 2014, 23(11): 110201.
[9] Mei symmetry and conservation laws of discrete nonholonomic dynamical systems with regular and irregular lattices
Zhao Gang-Ling (赵纲领), Chen Li-Qun (陈立群), Fu Jing-Li (傅景礼), Hong Fang-Yu (洪方昱). Chin. Phys. B, 2013, 22(3): 030201.
[10] Conformal invariance, Noether symmetry, Lie symmetry and conserved quantities of Hamilton systems
Chen Rong (陈蓉), Xu Xue-Jun (许学军). Chin. Phys. B, 2012, 21(9): 094501.
[11] Symmetry of Lagrangians of holonomic nonconservative system in event space
Zhang Bin(张斌), Fang Jian-Hui(方建会), and Zhang Wei-Wei(张伟伟) . Chin. Phys. B, 2012, 21(7): 070208.
[12] Noether conserved quantities and Lie point symmetries for difference nonholonomic Hamiltonian systems in irregular lattices
Xia Li-Li(夏丽莉) and Chen Li-Qun(陈立群) . Chin. Phys. B, 2012, 21(7): 070202.
[13] Mei symmetry and conserved quantities in Kirchhoff thin elastic rod statics
Wang Peng(王鹏), Xue Yun(薛纭), and Liu Yu-Lu(刘宇陆) . Chin. Phys. B, 2012, 21(7): 070203.
[14] Form invariance and approximate conserved quantity of Appell equations for a weakly nonholonomic system
Jia Li-Qun(贾利群), Zhang Mei-Ling(张美玲), Wang Xiao-Xiao(王肖肖), and Han Yue-Lin(韩月林) . Chin. Phys. B, 2012, 21(7): 070204.
[15] Symmetry of Lagrangians of a holonomic variable mass system
Wu Hui-Bin(吴惠彬) and Mei Feng-Xiang(梅凤翔) . Chin. Phys. B, 2012, 21(6): 064501.
No Suggested Reading articles found!