|
|
Laser guiding of cold molecules in a hollow optical fiber and continuous-wave cold molecular beam generation |
Liu Run-Qin(刘润琴)a)b), Yin Ya-Ling(尹亚玲)a)c), and Yin Jian-Ping(印建平)a)† |
a. State Key Laboratory of Precision Spectroscopy, Department of Physics, East China Normal University, Shanghai 200062, China;
b. Department of Physics, Kashgar Teachers College, Kashgar 844008, China;
c. Department of Physics, National Laboratory of Solid State Microstructures, Nanjing University, Nanjing 210093, China |
|
|
Abstract A novel scheme for guiding arbitrary buffer-gas cooled neutral molecules in a hollow optical fiber (HOF) using a red-detuned HE11 mode is proposed and analysed theoretically. We give the electromagnetic field distribution of the HE11 mode in the HOF and calculate the optical potential of an I2 molecule, and study the molecule guiding mechanism using a classical Monte Carlo simulation. Using a 6 kW input laser, an S-shape HOF with a 2 cm curvature radius for both bends, and an input molecular beam with a transverse temperature of 0.5 K and longitudinal temperature of 5 K, we obtain a guiding efficiency of ~0.126% for the scheme, and the transverse and longitudinal temperatures of the guided molecular beam are 1.9 mK and 0.5 K, respectively.
|
Received: 07 January 2011
Revised: 13 April 2011
Accepted manuscript online:
|
PACS:
|
33.80.Gj
|
(Diffuse spectra; predissociation, photodissociation)
|
|
37.10.Mn
|
(Slowing and cooling of molecules)
|
|
87.80.Cc
|
(Optical trapping)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 10804031, 10904037, 10434060, 10674047, 11034002, and 10904060), the National Basic Research Program of China (Grant Nos. 2006CB921604 and 2011CB921602), the Basic Key Program of Shanghai Municipality, China (Grant No. 07JC14017), the Shanghai Leading Academic Discipline Project, China (Grant No. B408), and the Jiangsu Provincial Projects for Postdoctoral Research Funds, China (Grant No. 0802009B). |
Corresponding Authors:
Yin Jian-Ping,jpyin@phy.ecnu.edu.cn
E-mail: jpyin@phy.ecnu.edu.cn
|
Cite this article:
Liu Run-Qin(刘润琴), Yin Ya-Ling(尹亚玲), and Yin Jian-Ping(印建平) Laser guiding of cold molecules in a hollow optical fiber and continuous-wave cold molecular beam generation 2012 Chin. Phys. B 21 033302
|
[1] |
Hudson J J, Sauer B E, Tarbutt M R and Hinds E A 2002 Phys. Rev. Lett. 89 023003
|
[2] |
Gilijamse J J, Hoekstra S, van de Meerakker S Y T, Groenenboom G C and Meijer G 2006 Science 313 1617
|
[3] |
Hudson E R, Ticknor C, Sawyer B C, Taatjes C A, Lewandowski H J, Bochinski J R, Bohn J L and Ye Jun 2006 Phys. Rev. A 73 063404
|
[4] |
DeMille D 2002 Phys. Rev. Lett. 88 067901
|
[5] |
Andr? A, DeMille D, Doyle J M, Lukin M D, Maxwell S E, Rabl P, Schoelkopf R J and Zoller P 2006 Nat. Phys. 2 636
|
[6] |
Bethlem H L, Berden G and Meijer G 1999 Phys. Rev. Lett. 83 1558
|
[7] |
Bethlem H L, Berden G, Crompvoets F M H, Jongma R T, van Roij A J A and Meijer G 2000 Nature 406 491
|
[8] |
Zhou Q, Lu J F and Yin J P 2010 Chin. Phys. B 19 123203
|
[9] |
Zhou Q, Lu J F and Yin J P 2010 Chin. Phys. B 19 093202
|
[10] |
Loesch H J and Scheel B 2000 Phys. Rev. Lett. 85 2709
|
[11] |
Junglen T, Rieger T, Rangwala S A, Pinkse P W H and Rempe G 2004 Eur. Phys. J. D 31 365
|
[12] |
Tsuji H, Okuda Y, Sekiguchi T and Kanamori H 2007 Chem. Phys. Lett. 436 331
|
[13] |
Patterson D and Doyle J M 2007 J. Chem. Phys. 126 154307
|
[14] |
Xia Y, Yin Y, Chen H, Deng L and Yin J 2008 Phys. Rev. Lett. 100 043003
|
[15] |
Liu Y, Yun M, Xia Y, Deng L and Yin J 2010 Phys. Chem. Chem. Phys. 12 745
|
[16] |
Harrington J A and Christopher C G 1990 Opt. Lett. 15 541
|
[17] |
Marcatili E A J and Schmeltzer R A 1964 Bell Syst. Tech. J. 43 1783
|
[18] |
Ito H, Sakaki K, Nakata T, Jhe W and Ohtsu M 1995 Opt. Commun. 115 57
|
[19] |
Saito M, Sato S and Miyagi M 1993 J. Opt. Soc. Am. A 10 277
|
[20] |
Miyagi M 1981 Appl. Opt. 20 1221
|
[21] |
Miyagi M, Harada K, Aizawa Y and Kawakami S 1984 Proc. Soc. Photo-Opt. Instrum. Eng. 484 117
|
[22] |
Stapelfeldt H, Sakai H, Constant E and Corkum P B 1997 Phys. Rev. Lett. 79 2787
|
[23] |
Sakai H, Tarasevitch A, Danilov J, Stapelfeldt H, Yip R W, Ellert C, Constant E and Corkum P B 1998 Phys. Rev. A 57 2794
|
[24] |
Barker P F and Shneider M N 2002 Phys. Rev. A 66 065402
|
[25] |
Renn M J, Zozulya A A, Donley E A, Cornell E A and Anderson D Z 1997 Phys. Rev. A 55 3684
|
[26] |
Liu R, Zhou Q, Yin Y and Yin J 2009 J. Opt. Soc. Am. B 26 1076
|
[27] |
Li D J, Hu Z F and Li S Q 2003 Chin. Phys. 12 738
|
[28] |
Patterson D, Rasmussen J and Doyle J M 2009 New J. Phys. 11 055018
|
[29] |
Yin Y, Zhou Qi, Deng L, Xia Y and Yin J 2009 Opt. Express 17 10706
|
[30] |
Yin Y L, Xia Y and Yin J P 2008 Chin. Phys. B 17 3672
|
[31] |
Bethlem H L, Kajita M, Sartakow B, Meijer G and Ubachs W 2008 Eur. Phys. J. ST 163 55
|
[32] |
Willitsch S, Bell M T, Gingell A D, Procter S R and Softley T P 2008 Phys. Rev. Lett. 100 043203
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|