Please wait a minute...
Chin. Phys. B, 2012, Vol. 21(3): 030201    DOI: 10.1088/1674-1056/21/3/030201
GENERAL   Next  

Asymptotic solving method for sea–air coupled oscillator ENSO model

Zhou Xian-Chun(周先春)a)b), Yao Jing-Sun(姚静荪))c), and Mo Jia-Qi(莫嘉琪)c)
a. Jiangsu Key Laboratory of Meteorological Observation and Information Processing, Nanjing University of Information Science and Technology, Nanjing 210044, China;
b. College of Electronic and Information Engineering, Nanjing University of Information Science & Technology, Nanjing 210044, China;
c. Anhui Normal University, Wuhu 241003, China
Abstract  The ENSO is an interannual phenomenon involved in the tropical Pacific ocean-atmosphere interaction. In this article, we create an asymptotic solving method for the nonlinear system of the ENSO model. The asymptotic solution is obtained. And then we can furnish weather forecasts theoretically and other behaviors and rules for the atmosphere-ocean oscillator of the ENSO.
Keywords:  nonlinear system      asymptotic solution      sea-air coupled oscillator  
Received:  24 September 2011      Revised:  03 November 2011      Accepted manuscript online: 
PACS:  02.30.Hq (Ordinary differential equations)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 40876010), the Strategic Priority Research Program-Climate Change: Carbon Budget and Relevant Issues of the Chinese Academy of Sciences (Grant No. XDA01020304), the Natural Science Foundation of Zhejiang Province, China (Grant No. Y6110502), the Natural Science Foundation of Jiangsu Province, China (Grant No. BK2011042), and the Natural Science Foundation from the Education Bureau of Anhui Province, China (Grant No. KJ2011A135).
Corresponding Authors:  Zhou Xian-Chun,zhouxc2008@163.com     E-mail:  zhouxc2008@163.com

Cite this article: 

Zhou Xian-Chun(周先春), Yao Jing-Sun(姚静荪)), and Mo Jia-Qi(莫嘉琪) Asymptotic solving method for sea–air coupled oscillator ENSO model 2012 Chin. Phys. B 21 030201

[1] Bjerknes J 1996 Tellus 18 820
[2] Cane M A and Zebiak S E 1985 Science 228 1084
[3] McCreary J P and Anderson D L T 1984 Mon. Wea. Rev. 112 934
[4] Bjerknes J 1969 Mon. Wea. Rev. 97 163
[5] McWilliams J C and Gent P R 1991 J. Atmos. Sci. 35 962
[6] Philander S G H, Yamagata T and Pacanowski R C 1984 J. Atmos. Sci. 41 604
[7] Gill A E 1985 Coupled Ocean-Atmosphere Models 40 303
[8] Jin F F and Neelin J D 1993 J. Atmos. Sci. 50 3523
[9] Jin F F, Neelin J D and Ghil M 1994 Science 264 70
[10] Wang B and Wang Y 1996 J. Climate. 9 1586
[11] Zebiak S E and Cane M A 1987 Mon. Wea. Rev. 115 2262
[12] Cane M A, M黱nich M and Zebiak S E 1990 J. Atmos. Sci. 47 1562
[13] Wang B, Barcilon A and Fang Z 1999 J. Atmos. Sci. 56 5
[14] Wang C 2001 Adv. Atmospheric Sci. 18 674
[15] Feng G L, Dai X G, Wang A H and Chou J F 2001 Acta Phys. Sin. 50 606 (in Chinese)
[16] Feng G L, Dong W J and Jia X J 2002 Acta Phys. Sin. 51 1181 (in Chinese)
[17] Liu S K, Fu Z T and Liu S D 2002 Acta Phys. Sin. 51 10 (in Chinese)
[18] Lin W T and Mo J Q 2003 Chinese Science Bulletin 48 5
[19] Zhou X C, Lin Y H, Lin W T and Mo J Q 2009 Acta Oceanologica Sin. 28 1
[20] Zhou X C, Lin Y H, Lin W T and Mo J Q 2009 Chin. Phys. B 18 4603
[21] Zhou X C, Lin W T, Lin Y H and Mo J Q 2010 Acta. Phys. Sin. 59 2173 (in Chinese)
[22] Mo J Q and Lin W T 2008 Acta. Phys. Sin. 57 6689 (in Chinese)
[23] Mo J Q and Lin W T 2008 Acta. Phys. Sin. 57 6694 (in Chinese)
[25] Mo J Q, Lin Y H and Lin W T 2009, Acta. Phys. Sin. 58 6692 (in Chinese)
[24] Mo J Q, Lin W T and Lin Y H 2009 Chin. Phys. B 18 3624
[26] Mo J Q, Lin W T and Lin Y H 2010 Chin. Geographical Sci. 20 383
[27] Mo J Q, Lin Y H and Lin W T 2010 Acta. Phys. Sin. 59 6701 (in Chinese)
[28] Xie F, Lin W T, Lin Y H and Mo J Q 2011 Chin. Phys. B 20 010208
[29] Barbu L and Morosanu G 2007 Singularly Perturbed Boundary-Value Problems (Basel: Birkhauserm Verlag AG)
[30] DÁprile T and Pistoia A 2010 J. Differ. Eqns. 248 556
[31] Ei S I and Matsuzawa H 2010 Discrete Contin. Dyn. Syst. 26 910
[32] Suzuki R 2010 Adv. Differ. Eqns. 15 283
[33] Mo J Q 2009 Science in China Ser. G 52 1007
[36] Liao S J 2004 Beyond Perturbation: Introduction to the Homotopy Analysis Method (New York: CRC Press Co)
[1] Exponential sine chaotification model for enhancing chaos and its hardware implementation
Rui Wang(王蕊), Meng-Yang Li(李孟洋), and Hai-Jun Luo(罗海军). Chin. Phys. B, 2022, 31(8): 080508.
[2] Three-dimensional MHD flow over a shrinking sheet: Analytical solution and stability analysis
Sumaira Afzal, Saleem Asghar, Adeel Ahmad. Chin. Phys. B, 2017, 26(1): 014704.
[3] Hopf bifurcation control for a coupled nonlinear relativerotation system with time-delay feedbacks
Liu Shuang (刘爽), Li Xue (李雪), Tan Shu-Xian (谈书贤), Li Hai-Bin (李海滨). Chin. Phys. B, 2014, 23(10): 104502.
[4] A steady solution of the gasar eutectic growth in directional solidification
Li Xiang-Ming (李向明), Li Wen-Qiong (李文琼), Jin Qing-Lin (金青林), Zhou Rong (周荣). Chin. Phys. B, 2013, 22(7): 078101.
[5] Asymptotic solution of weak nonlinear model for mid-latitude stationary wind field of two-layer barotropic ocean
Lin Wan-Tao (林万涛), Zhang Yu (张宇), Mo Jia-Qi (莫嘉琪). Chin. Phys. B, 2013, 22(3): 030205.
[6] Solving a class of burning disturbed problem with shock layers
Ouyang Cheng(欧阳成), Chen Li-Hua(陈丽华), and Mo Jia-Qi(莫嘉琪) . Chin. Phys. B, 2012, 21(5): 050203.
[7] Stability analysis of nonlinear Roesser-type two-dimensional systems via homogenous polynomial technique
Zhang Tie-Yan (张铁岩), Zhao Yan (赵琰), Xie Xiang-Peng (解相朋). Chin. Phys. B, 2012, 21(12): 120503.
[8] Robust fault-sensitive synchronization of a class of nonlinear systems
Xu Shi-Yun(徐式蕴), Yang Ying(杨莹), Liu Xian(刘仙), Tang Yong(汤涌), and Sun Hua-Dong(孙华东) . Chin. Phys. B, 2011, 20(2): 020509.
[9] Asymptotic solution for a perturbed mechanism of western boundary undercurrents in the Pacific
Mo Jia-Qi(莫嘉琪), Lin Wan-Tao(林万涛), and Lin Yi-Hua(林一骅). Chin. Phys. B, 2009, 18(9): 3624-3627.
[10] Berry phase in a generalized nonlinear two-level system
Liu Ji-Bing(刘继兵), Li Jia-Hua(李家华), Song Pei-Jun(宋佩君), and Li Wei-Bin(李伟斌). Chin. Phys. B, 2008, 17(1): 38-42.
[11] Asymptotic solution of a sea--air oscillator for ENSO mechanism
Mo Jia-Qi(莫嘉琪), Lin Wan-Tao(林万涛), and Wang Hui(王辉). Chin. Phys. B, 2007, 16(3): 578-581.
[12] Synchronization of an uncertain chaotic system via recurrent neural networks
Tan Wen (谭文), Wang Yao-Nan (王耀南). Chin. Phys. B, 2005, 14(1): 72-76.
No Suggested Reading articles found!