Please wait a minute...
Chin. Phys. B, 2011, Vol. 20(6): 063601    DOI: 10.1088/1674-1056/20/6/063601
ATOMIC AND MOLECULAR PHYSICS Prev   Next  

Geometries, stabilities, and electronic properties of Be-doped gold clusters: a density functional theory study

Chen Dong-Dong(陈冬冬), Kuang Xiao-Yu(邝小渝), Zhao Ya-Ru(赵亚儒), Shao Peng(邵鹏), and Li Yan-Fang(李艳芳)
Institute of Atomic and Molecular Physics, Sichuan University, Chengdu 610065, China
Abstract  We have systematically investigated the geometrical structures, relative stabilities and electronic properties of small bimetallic AunBe (n=1, 2, ..., 8) clusters using a density functional method at BP86 level. The optimized geometries reveal that the impurity beryllium atom dramatically affects the structures of the Aun clusters. The averaged binding energies, fragmentation energies, second-order difference of energies, the highest occupied-lowest unoccupied molecular orbital energy gaps and chemical hardness are investigated. All of them exhibit a pronounced odd-even alternation, manifesting that the clusters with even number of gold atoms possess relatively higher stabilities. Especially, the linear Au2Be cluster is magic cluster with the most stable chemical stability. According to the natural population analysis, it is found that charge-transferring direction between Au atom and Be atom changes at the size of n=4.
Keywords:  AunBe clusters      geometrical configuration      density functional method  
Received:  22 November 2010      Revised:  24 December 2010      Accepted manuscript online: 
PACS:  36.40.Cg (Electronic and magnetic properties of clusters)  
  36.40.Qv (Stability and fragmentation of clusters)  
  36.40.Wa (Charged clusters)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 10974138).

Cite this article: 

Chen Dong-Dong(陈冬冬), Kuang Xiao-Yu(邝小渝), Zhao Ya-Ru(赵亚儒), Shao Peng(邵鹏), and Li Yan-Fang(李艳芳) Geometries, stabilities, and electronic properties of Be-doped gold clusters: a density functional theory study 2011 Chin. Phys. B 20 063601

[1] Koretsky G M, Kerns K P, Nieman G C, Knickelbein M B and Riley S J 1999 J. Phys. Chem. A 103 1997
[2] Wang H Y, Li X B, Tang Y J, Bruce R K and Henry F S 2007 Chin. Phys. 16 1660
[3] Heiz U, Vayloyan A, Schumacher E, Yeretzian C, Stener M, Gisdakis P and Roesch N 1996 J. Chem. Phys. 105 5574
[4] Mao H P, Tang Y J, Wang H Y and Zhu Z H 2006 Acta Phys. Sin. 55 4542 (in Chinese)
[5] Zhao L X, Feng X J, Cao T T, Liang X and Luo Y H 2009 Chin. Phys. B 18 2709
[6] Gu J, Wang S Y and Gou B C 2009 Acta Phys. Sin. 58 3338 (in Chinese)
[7] Rodriguez J A 1996 Surf. Sci. Rep. 24 223
[8] Zehner D M and Goodman D M 1987 Mater. Res. Soc. Symp. Proc. 83 (Pittsburgh: MRS) p. 199
[9] Ni Y, Tang Y J, Wang H Y, Xu G L, Zhu Z H, Ma M Z and Mao H P 2004 Acta Phys. Sin. 53 1766 (in Chinese)
[10] Majumder C, Kandalam A K and Jena P 2006 Phys. Rev. B 74 205437
[11] Graciani J, Oviedo J and Sanz J F 2006 J. Phys. Chem. B 110 11600
[12] Teles J H, Brode S and Chabanas M 1999 Angew. Chem. 99 2589
[13] McRae R, Lai B, Vogt S and Fahrni C J 2006 J. Struct. Biol. 155 22
[14] Ackerson C J, Jadzinsky P D, Jensen G J and Kornberg R D 2006 J. Am. Chem. Soc. 128 2635
[15] Xiao L and Wang L 2004 Chem. Phys. Lett. 392 452
[16] Die D, Kuang X Y, Gou J J and Zheng B X 2010 J. Phys. Chem. Solids 71 770
[17] Li X, Kiran B, Zhai H J and Wang L S 2002 Angewandte Chemie International Edition 41 4786
[18] Zhai H J, Li J and Wang L S 2004 J. Chem. Phys. 121 8369
[19] Torres M B, Fernandez E M and Balbas L C 2005 Phys. Rev. B 71 155412
[20] Neukermans S, Janssens E, Tanaka H, Silverans R E and Lievens P 2003 Phys. Rev. Lett. 90 033401
[21] Li X, Kiran B, Cui L F and Wang L S 2005 Phys. Rev. Lett. 95 253401
[22] Die D, Kuang X Y, Guo J J and Zheng B X 2009 J. Mol. Struc. THEOCHEM 902 54
[23] Wang H Q, Kuang X Y and Li H F 2010 Phys. Chem. Chem. Phys. 12 5156
[24] Balducci G, Ciccioli A and Gigli G 2004 J. Chem. Phys. 121 16
[25] Reed A E, Curtiss L A and Weinhold F 1985 J. Chem. Phys. 83 735
[26] Reed A E, Curtiss L A and Weinhold F 1988 Chem. Rev. 88 899
[27] Frisch M J, Trucks G W, Schlegel H B, Scuseria G E et al. 2004 Gaussian 03, Revision E.01 (Wallingford CT: Gaussian, Inc.)
[28] Wachters A J H 1970 J. Chem. Phys. 52 1033
[29] Stevens W J, Basch H and Krauss M 1984 J. Chem. Phys. 81 6026
[30] Hay P J and Wadt W R 1985 J. Chem. Phys. 82 299
[31] Krishnan R, Binkley J S, Seeger R and Pople J A 1980 J. Chem. Phys. 72 650
[32] Hehre W J, Radom L, Schleyer P V R and Pople J A 1986 Ab initio Molecular Orbital Theory (New York: Wiley)
[33] Becke A D 1988 Phys. Rev. A 38 3098
[34] Becke A D 1993 J. Chem. Phys. 98 5648
[35] Perdew J P and Yue W 1986 Phys. Rev. B 33 8800
[36] Perdew J P and Wang Y 1992 Phys. Rev. B 45 13244
[37] Barrow R F, Gissane W J G and Travis D N 1965 Proc. R. Soc. London Ser. A 287 240
[38] Singh P D and Pathak A N 1970 J. Quantum Spectrosc. Radiat. Transf. 10 819
[39] Borisov Y A and Raevskii N I 1983 Zh. Strukt. Khim. 24 97
[40] Gingerich K A and Finkbeiner H C 1970 J. Chem. Phys. 52 2956
[41] Ajanta D and Ramesh C D 2008 J. Mol. Struc. THEOCHEM 870 83
[42] Deshpande M D, Roy S and Kanhere D G 2007 Phys. Rev. B 76 195423
[43] Li X B, Wang H Y, Yang X D and Zhu Z H 2007 J. Chem. Phys. 126 084505
[44] Wang C C, Zhao R N and Han J G 2006 J. Chem. Phys. 124 194301
[45] Zhao R N, Han J G and Sheng L S 2010 Chem. Phys. 378 82
[46] Han J G, Zhao R N and Duan Y H 2007 J. Phys. Chem. A 111 2148
[47] Wang J and Han J G 2005 J. Chem. Phys. 123 064306
[1] The relativistic density functional investigations on geometries, electronic and magnetic properties of Irn (n=1–13) clusters
Guo Ping(郭平), Zheng Ji-Ming(郑继明), Zhao Pei(赵佩), Zheng Lin-Lin(郑琳琳), and Ren Zhao-Yu(任兆玉). Chin. Phys. B, 2010, 19(8): 083601.
No Suggested Reading articles found!