INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY |
Prev
Next
|
|
|
Improvement of photoemission performance of a gradient-doping transmission-mode GaAs photocathode |
Zhang Yi-Jun(张益军), Niu Jun(牛军), Zhao Jing(赵静), Xiong Ya-Juan(熊雅娟),Ren Ling(任玲), Chang Ben-Kang(常本康)†, and Qian Yun-Sheng(钱芸生) |
Institute of Electronic Engineering and Optoelectronic Technology, Nanjing University of Science and Technology, Nanjing 210094, China |
|
|
Abstract Two types of transmission-mode GaAs photocathodes grown by molecular beam epitaxy are compared in terms of activation process and spectral response, one has a gradient-doping structure and the other has a uniform-doping structure. The experimental results show that the gradient-doping photocathode can obtain a higher photoemission capability than the uniform-doping one. As a result of the downward graded band-bending structure, the cathode performance parameters, such as the electron average diffusion length and the surface electron escape probability obtained by fitting quantum yield curves, are greater for the gradient-doping photocathode. The electron diffusion length is within a range of from 2.0 to 5.4 μm for doping concentration varying from 1019 to 1018 cm-3 and the electron average diffusion length of the gradient-doping photocathode achieves 3.2 μm.
|
Received: 12 April 2011
Revised: 22 August 2011
Accepted manuscript online:
|
PACS:
|
85.60.Ha
|
(Photomultipliers; phototubes and photocathodes)
|
|
73.61.Ey
|
(III-V semiconductors)
|
|
73.20.At
|
(Surface states, band structure, electron density of states)
|
|
79.60.-i
|
(Photoemission and photoelectron spectra)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 60801036 and 61067001), the Key Science and
Technology Project of Henan Province of China (Grant No. 112102210202), and the Research and Innovation Plan for Graduate
Students of Jiangsu Higher Education Institutions of China (Grant No. CX09B 096Z). |
Cite this article:
Zhang Yi-Jun(张益军), Niu Jun(牛军), Zhao Jing(赵静), Xiong Ya-Juan(熊雅娟),Ren Ling(任玲), Chang Ben-Kang(常本康), and Qian Yun-Sheng(钱芸生) Improvement of photoemission performance of a gradient-doping transmission-mode GaAs photocathode 2011 Chin. Phys. B 20 118501
|
[1] |
Martinelli R U and Fisher D E 1974 Proc. IEEE 62 1339
|
[2] |
Estrera J P, Ostromek T, Isbell W and Bacarella A 2003 Proc. SPIE 5079 196
|
[3] |
Ruan C J 2003 Chin. Phys. 12 483
|
[4] |
Zhang Y J, Niu J, Zhao J, Zou J J and Chang B K 2011 Acta Phys. Sin. 60 067301 (in Chinese)
|
[5] |
Zhang Y J, Zou J J, Wang X H, Chang B K, Qian Y S, Zhang J J and Gao P 2011 Chin. Phys. B 20 048501
|
[6] |
André J P, Guittard P, Hallais J and Piaget C 1981 J. Cryst. Growth 55 235
|
[7] |
Narayanan A A, Fisher D G, Erickson L P and O'Clock G D 1984 J. Appl. Phys. 56 1886
|
[8] |
Pastuszka S, Terekhov A S and Wolf A 1996 Appl. Surf. Sci. 99 361
|
[9] |
Liu Z, Sun Y, Peterson S and Pianetta P 2008 Appl. Phys. Lett. 92 241107
|
[10] |
Maruyama T, Brachmann A, Clendenin J E, Desikan T, Garwin E L, Kirby R E, Luh D A, Turner J and Prepost R 2002 Nucl. Instrum. Methods Phys. Res. A 492 199
|
[11] |
Aulenbacher K, Schuler J, Harrach D V, Reichert E, Röthgen J, Subashev A, Tioukine V and Yashin Y 2002 J. Appl. Phys. 92 7536
|
[12] |
Zou J J and Chang B K 2006 Opt. Eng. 45 054001
|
[13] |
Yang Z, Chang B K, Zou J J, Qiao J L, Gao P, Zeng Y P and Li H 2007 Appl. Opt. 46 7035
|
[14] |
Vergara G, Gómez L J, Capmany J and Montojo M T 1997 Vacuum 48 155
|
[15] |
Antypas G A, Escher J S, Edgecumbe J and Enck R S 1978 J. Appl. Phys. 49 4301
|
[16] |
Stocker B J 1975 Surf. Sci. 47 501
|
[17] |
Zhang Y J, Niu J, Zou J J, Chang B K and Xiong Y J 2010 Appl. Opt. 49 3935
|
[18] |
Zhang Y J, Chang B K, Yang Z, Niu J, Xiong Y J, Shi F, Guo H and Zeng Y P 2009 Appl. Opt. 48 1715
|
[19] |
Gregory P E, Spicer W E, Ciraci S and Harrison W A 1974 Appl. Phys. Lett. 25 511
|
[20] |
Su C Y, Spicer W E and Lindau I 1983 J. Appl. Phys. 54 1413
|
[21] |
Yang Z, Zou J J, Niu J, Zhang Y J and Chang B K 2010 Spectrosc. Spect. Anal. 30 2038 (in Chinese)
|
[22] |
Niu J, Zhang Y J, Chang B K and Xiong Y J 2011 Acta Phys. Sin. 60 044209 (in Chinese)
|
[23] |
Walukiewicz W, Lagowski J, Jastrzebski L and Gatos H C 1979 J. Appl. Phys. 50 5040
|
[24] |
Tiwari S and Wright S L 1990 Appl. Phys. Lett. 56 563
|
[25] |
Casey H C, Miller B I and Pinkas E 1973 J. Appl. Phys. 44 1281
|
[26] |
Ito H, Furuta T and Ishibashi T 1991 Appl. Phys. Lett. 58 2936
|
[27] |
Casey H C and Stern F 1976 J. Appl. Phys. 47 631
|
[28] |
Nelson R J and Sobers R G 1978 J. Appl. Phys. 49 6103
|
[29] |
Lovejoy M L, Melloch M R, Lundstrom M S, Keyes B M, Ahrenkiel R K, Lyon T J and Woodall J M 1992 Appl. Phys. Lett. 61 822
|
[30] |
Vergara G, Gómez L J, Presa J and Montojo M T 1990 J. Vac. Sci. Technol. A 8 3676
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|