Please wait a minute...
Chin. Phys. B, 2011, Vol. 20(11): 118501    DOI: 10.1088/1674-1056/20/11/118501
INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY Prev   Next  

Improvement of photoemission performance of a gradient-doping transmission-mode GaAs photocathode

Zhang Yi-Jun(张益军), Niu Jun(牛军), Zhao Jing(赵静), Xiong Ya-Juan(熊雅娟),Ren Ling(任玲), Chang Ben-Kang(常本康), and Qian Yun-Sheng(钱芸生)
Institute of Electronic Engineering and Optoelectronic Technology, Nanjing University of Science and Technology, Nanjing 210094, China
Abstract  Two types of transmission-mode GaAs photocathodes grown by molecular beam epitaxy are compared in terms of activation process and spectral response, one has a gradient-doping structure and the other has a uniform-doping structure. The experimental results show that the gradient-doping photocathode can obtain a higher photoemission capability than the uniform-doping one. As a result of the downward graded band-bending structure, the cathode performance parameters, such as the electron average diffusion length and the surface electron escape probability obtained by fitting quantum yield curves, are greater for the gradient-doping photocathode. The electron diffusion length is within a range of from 2.0 to 5.4 μm for doping concentration varying from 1019 to 1018 cm-3 and the electron average diffusion length of the gradient-doping photocathode achieves 3.2 μm.
Keywords:  transmission-mode photocathode      gradient-doping      Cs-O activation      quantum yield  
Received:  12 April 2011      Revised:  22 August 2011      Accepted manuscript online: 
PACS:  85.60.Ha (Photomultipliers; phototubes and photocathodes)  
  73.61.Ey (III-V semiconductors)  
  73.20.At (Surface states, band structure, electron density of states)  
  79.60.-i (Photoemission and photoelectron spectra)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 60801036 and 61067001), the Key Science and Technology Project of Henan Province of China (Grant No. 112102210202), and the Research and Innovation Plan for Graduate Students of Jiangsu Higher Education Institutions of China (Grant No. CX09B 096Z).

Cite this article: 

Zhang Yi-Jun(张益军), Niu Jun(牛军), Zhao Jing(赵静), Xiong Ya-Juan(熊雅娟),Ren Ling(任玲), Chang Ben-Kang(常本康), and Qian Yun-Sheng(钱芸生) Improvement of photoemission performance of a gradient-doping transmission-mode GaAs photocathode 2011 Chin. Phys. B 20 118501

[1] Martinelli R U and Fisher D E 1974 Proc. IEEE 62 1339
[2] Estrera J P, Ostromek T, Isbell W and Bacarella A 2003 Proc. SPIE 5079 196
[3] Ruan C J 2003 Chin. Phys. 12 483
[4] Zhang Y J, Niu J, Zhao J, Zou J J and Chang B K 2011 Acta Phys. Sin. 60 067301 (in Chinese)
[5] Zhang Y J, Zou J J, Wang X H, Chang B K, Qian Y S, Zhang J J and Gao P 2011 Chin. Phys. B 20 048501
[6] André J P, Guittard P, Hallais J and Piaget C 1981 J. Cryst. Growth 55 235
[7] Narayanan A A, Fisher D G, Erickson L P and O'Clock G D 1984 J. Appl. Phys. 56 1886
[8] Pastuszka S, Terekhov A S and Wolf A 1996 Appl. Surf. Sci. 99 361
[9] Liu Z, Sun Y, Peterson S and Pianetta P 2008 Appl. Phys. Lett. 92 241107
[10] Maruyama T, Brachmann A, Clendenin J E, Desikan T, Garwin E L, Kirby R E, Luh D A, Turner J and Prepost R 2002 Nucl. Instrum. Methods Phys. Res. A 492 199
[11] Aulenbacher K, Schuler J, Harrach D V, Reichert E, Röthgen J, Subashev A, Tioukine V and Yashin Y 2002 J. Appl. Phys. 92 7536
[12] Zou J J and Chang B K 2006 Opt. Eng. 45 054001
[13] Yang Z, Chang B K, Zou J J, Qiao J L, Gao P, Zeng Y P and Li H 2007 Appl. Opt. 46 7035
[14] Vergara G, Gómez L J, Capmany J and Montojo M T 1997 Vacuum 48 155
[15] Antypas G A, Escher J S, Edgecumbe J and Enck R S 1978 J. Appl. Phys. 49 4301
[16] Stocker B J 1975 Surf. Sci. 47 501
[17] Zhang Y J, Niu J, Zou J J, Chang B K and Xiong Y J 2010 Appl. Opt. 49 3935
[18] Zhang Y J, Chang B K, Yang Z, Niu J, Xiong Y J, Shi F, Guo H and Zeng Y P 2009 Appl. Opt. 48 1715
[19] Gregory P E, Spicer W E, Ciraci S and Harrison W A 1974 Appl. Phys. Lett. 25 511
[20] Su C Y, Spicer W E and Lindau I 1983 J. Appl. Phys. 54 1413
[21] Yang Z, Zou J J, Niu J, Zhang Y J and Chang B K 2010 Spectrosc. Spect. Anal. 30 2038 (in Chinese)
[22] Niu J, Zhang Y J, Chang B K and Xiong Y J 2011 Acta Phys. Sin. 60 044209 (in Chinese)
[23] Walukiewicz W, Lagowski J, Jastrzebski L and Gatos H C 1979 J. Appl. Phys. 50 5040
[24] Tiwari S and Wright S L 1990 Appl. Phys. Lett. 56 563
[25] Casey H C, Miller B I and Pinkas E 1973 J. Appl. Phys. 44 1281
[26] Ito H, Furuta T and Ishibashi T 1991 Appl. Phys. Lett. 58 2936
[27] Casey H C and Stern F 1976 J. Appl. Phys. 47 631
[28] Nelson R J and Sobers R G 1978 J. Appl. Phys. 49 6103
[29] Lovejoy M L, Melloch M R, Lundstrom M S, Keyes B M, Ahrenkiel R K, Lyon T J and Woodall J M 1992 Appl. Phys. Lett. 61 822
[30] Vergara G, Gómez L J, Presa J and Montojo M T 1990 J. Vac. Sci. Technol. A 8 3676
[1] Absorption, quenching, and enhancement by tracer in acetone/toluene laser-induced fluorescence
Guang Chang(常光), Xin Yu(于欣), Jiangbo Peng(彭江波), Yang Yu(于杨), Zhen Cao(曹振), Long Gao(高龙), Minghong Han(韩明宏), and Guohua Wu(武国华). Chin. Phys. B, 2020, 29(12): 124212.
[2] Optical properties of wavelength-tunable green-emitting color conversion glass ceramics
Yang Li(李杨), Li-Li Hu(胡丽丽), Bo-Bo Yang(杨波波), Ming-Ming Shi(石明明), Jun Zou(邹军). Chin. Phys. B, 2017, 26(12): 128103.
[3] Comparison of the photoemission behaviour between negative electron affinity GaAs and GaN photocathodes
Zhang Yi-Jun(张益军), Zou Ji-Jun(邹继军), Wang Xiao-Hui(王晓晖), Chang Ben-Kang(常本康), Qian Yun-Sheng(钱芸生), Zhang Jun-Ju(张俊举), and Gao Pin(高频) . Chin. Phys. B, 2011, 20(4): 048501.
No Suggested Reading articles found!