Please wait a minute...
Chin. Phys. B, 2011, Vol. 20(1): 014201    DOI: 10.1088/1674-1056/20/1/014201
CLASSICAL AREAS OF PHENOMENOLOGY Prev   Next  

Interaction of two edge dislocations in free-space propagation

He De(何德)a)b),Gao Zeng-Hui(高曾辉)a),Yan Hong-Wei(闫红卫)b),and Lü Bai-Da(吕百达)b)
a Key Laboratory of Computational Physics, Yibin University, Yibin 644000, China; b Institute of Laser Physics and Chemistry, Sichuan University, Chengdu 610064, China
Abstract  This paper studies in detail the interaction of two edge dislocations nested in a Gaussian beam propagating in free space. It shows that in free-space propagation the edge dislocations are unstable and vanish, and  two noncanonical vortices with opposite topological charge take place when off-axis distances $c_{1}$ and $c_{2}$ of two edge dislocations are non-zero, and the condition $k^{2}w_{0}^{8}+32c_{1}c_{2}(w_{0}^{2}-2c_{1}c_{2})z^{2}>0$ is fulfilled ($k$-wave number, $w_{0}$-waist width). A noncanonical vortex appears when one off-axis distance is zero. However, one edge dislocation is stable when  two edge dislocations are perpendicular and one off-axis distance is zero. Two perpendicular edge dislocations both with zero off-axis distance are also stable. The analytical results are illustrated by numerical examples.
Keywords:  edge dislocation interaction      optical vortex      free-space propagation  
Received:  21 December 2009      Revised:  09 June 2010      Accepted manuscript online: 
PACS:  42.25.-p (Wave optics)  
  42.25.Bs (Wave propagation, transmission and absorption)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 10874125).

Cite this article: 

He De(何德), Gao Zeng-Hui(高曾辉), Yan Hong-Wei(闫红卫), and Lü Bai-Da(吕百达) Interaction of two edge dislocations in free-space propagation 2011 Chin. Phys. B 20 014201

[1] Soskin M S and Vasnetsov M V 2001 Prog. Opt. 42 219
[2] Heckenberg N R, Mc Duff R, Smith C P and White A G 1992 Opt. Lett. 17 221
[3] Khonina S N, Kotlyar V V, Soifer V A, Shinkaryev M V and Uspleniev G V 1992 Opt. Commun. 91 158
[4] Beijersbergen M W, Coerwinkel R P C, Kristensen M and Woerdman J P 1994 Opt. Commun. 112 321
[5] Davis J A, Carcole E and Cottrell D M 1996 Appl. Opt. 35 593
[6] Beijersbergen M W, Allen L, van der Veen H E L O and Woerd man J P 1993 Opt. Commun. 96 123
[7] Cheng K, Liu P S and L"u B D 2008 Chin. Phys. B 17 1743
[8] Kivshar Y S, Nepomnyashchy A, Tikhonenko V, Christou J and Luther-Davies B 2000 Opt. Lett. 25 123
[9] Mamaev A V, Saffman M and Zozulya A A 1996 Phys. Rev. Lett. 76 2262
[10] Liu P S and L"u B D 2007 Chin. Phys. 16 411
[11] Yan H W, Cheng K and L"u B D 2008 Acta Phys. Sin. 57 5542 (in Chinese)
[12] Dong L W, Ye F W, Wang J D and Li Y P 2004 Acta Phys. Sin. 53 3353 (in Chinese)
[13] Indebetouw G 1993 J. Mod. Opt. 40 73
[14] Petrov D V 2001 Opt. Commun. 188 307
[15] Petrov D V 2002 Opt. Quantum Electron 34 759
[16] Yan H W and L"u B D 2009 Opt. Commun. 282 717
[17] Nye J F and Berry M 1974 Proc. R. Soc. London Ser. A 336 165
[18] Freund I and Shvartsman N 1994 Phys. Rev. A 50 5164
[19] Roux F S 2004 J. Opt. Soc. Am. B 21 664
[20] Karman G P, Beijersbergen M W, van Duiji A, Bouwmeester D and Woerdman J P 1998 J. Opt. Soc. Am. A 15 884
[1] Three-Airy autofocusing beams
Xiao-Hong Zhang(张小红), Fei-Li Wang(王飞利), Lu-Yang Bai(白露阳), Ci-Bo Lou(楼慈波), Yi Liang(梁毅). Chin. Phys. B, 2020, 29(6): 064204.
[2] Propagation dynamics of off-axis noncanonical vortices in a collimated Gaussian beam
Cheng Yin(殷澄), Xuefen Kan(阚雪芬), Hailang Dai(戴海浪), Minglei Shan(单鸣雷), Qingbang Han(韩庆邦), Zhuangqi Cao(曹庄琪). Chin. Phys. B, 2019, 28(3): 034205.
[3] High-order optical vortex harmonics generated by relativistic femtosecond laser pulse
Han Yu-Jing (韩玉晶), Liao Guo-Qian (廖国前), Chen Li-Ming (陈黎明), Li Yu-Tong (李玉同), Wang Wei-Min (王伟民), Zhang Jie (张杰). Chin. Phys. B, 2015, 24(6): 065202.
[4] Composite optical vortices in noncollinear Laguerre--Gaussian beams and their propagation in free space
Cheng Ke(程科), Liu Pu-Sheng(刘普生), and Lü Bai-Da(吕百达) . Chin. Phys. B, 2008, 17(5): 1743-1751.
[5] Partially coherent nonparaxial modified Bessel--Gauss beams
Gao Zeng-Hui (高曾辉), Lü Bai-Da (吕百达). Chin. Phys. B, 2006, 15(2): 334-339.
No Suggested Reading articles found!