Please wait a minute...
Chin. Phys. B, 2010, Vol. 19(9): 090201    DOI: 10.1088/1674-1056/19/9/090201
GENERAL Prev   Next  

Meshless analysis of three-dimensional steady-state heat conduction problems

Cheng Rong-Jun(程荣军)a)† and Ge Hong-Xia(葛红霞)b)
a Ningbo Institute of Technology, Zhejiang University, Ningbo 315100, China; b Faculty of Science, Ningbo University, Ningbo 315211, China
Abstract  Steady-state heat conduction problems arisen in connection with various physical and engineering problems where the functions satisfy a given partial differential equation and particular boundary conditions, have attracted much attention and research recently. These problems are independent of time and involve only space coordinates, as in Poisson's equation or the Laplace equation with Dirichlet, Neuman, or mixed conditions. When the problems are too complex, it is difficult to find an analytical solution, the only choice left is an approximate numerical solution. This paper deals with the numerical solution of three-dimensional steady-state heat conduction problems using the meshless reproducing kernel particle method (RKPM). A variational method is used to obtain the discrete equations. The essential boundary conditions are enforced by the penalty method. The effectiveness of RKPM for three-dimensional steady-state heat conduction problems is investigated by two numerical examples.
Keywords:  reproducing kernel particle method      meshless method      steady-state heat conduction problem  
Received:  02 November 2009      Revised:  16 January 2010      Accepted manuscript online: 
PACS:  0200  
  0260  
  4410  
Fund: Project supported by the Natural Science Foundation of Ningbo, China (Grant Nos. 2009A610014 and 2009A610154) and the Natural Science Foundation of Zhejiang Province, China (Grant No. Y6090131).

Cite this article: 

Cheng Rong-Jun(程荣军) and Ge Hong-Xia(葛红霞) Meshless analysis of three-dimensional steady-state heat conduction problems 2010 Chin. Phys. B 19 090201

[1] Erwin K 1999 Advanced Engineering Mathematics (8th ed.) (New York: Wiley and Sons)
[2] Selvadurai 1979 Partial Differential Equations in Mechanics (Berlin: Springe Verlag)
[3] Christopher R J 2002 Advanced Methods in Scientific (Ulah: Universi ty of Utah, Spring Semester)
[4] Belytschko T, Krongauz Y and Organ D 1996 Comput. Meth. Appl. Mech. Engng. 139 3
[5] Monaghan J J 1988 Comput. Phys. Commun. 48 89
[6] Chen W 2000 Meshfree Method for Partial Differential Equations Vol. 1 (Berlin: Springer Verlag) p75
[7] Belytschko T, Lu Y Y and Gu L 1994 Int. J. Numer. Meth. Engng. 37 229
[8] Cheng R J and Cheng Y M 2008 Acta Phys. Sin. 57 6037 (in Chinese)
[9] Cheng R J and Ge H X 2009 Chin. Phys. B 18 4059
[10] Atluri S N and Zhu T 1998 Comput. Mech. 22 117
[11] Liu W K, Jun S and Zhang Y F 1995 Int. J. Numer. Meth. Engng. 20 1081
[12] Qin Y X and Cheng Y M 2006 Acta Phys. Sin. 55 3215 (in Chinese)
[13] Cheng R J and Cheng Y M 2008 Appl. Numer. Math. 58 884
[14] Cheng R J and Cheng Y M 2007 Acta Phys. Sin. 56 5569 (in Chinese)
[15] Dai B D and Cheng Y M 2007 Acta Phys. Sin. 56 597 (in Chinese)
[16] Cheng Y M and Chen M J 2003 Acta Mech. Sin. 35 181 (in Chinese)
[17] Cheng Y M and Peng M J 2005 Science in China Ser. G Physics, Mechanics & Astronomy 48 641
[18] Cheng Y M and Li J H 2005 Acta Phys. Sin. 54 4463 (in Chinese)
[19] Chen L and Cheng Y M 2008 Acta Phys. Sin. 57 1 (in Chinese)
[20] Chen L and Cheng Y M 2008 Acta Phys. Sin. 57 6047 (in Chinese)
[21] Peng M J and Cheng Y M 2009 Engineering Analysis with Boundary Elements 23 77
[22] Chen C S 1998 Int. J. Numer. Methods Engng. 42 1263
[23] Singh I V 2004 Numer. Heat Transfer Part A 46 199
[24] Singh I V 2005 Numer. Heat Transfer Part A 47 1025
[25] Singh I V and Prakash R 2005 Heat and Technology 21 73
[26] Singh I V and Jain P K 2005 Advanced in Engineering Software 36 554
[27] Singh A and Singh I V 2007 Int. J. Heat Mass Trans. 50 1212
[28] Arefmanesh A and Najafi M 2005 J. Fluids Engng. 127 647
[29] Batra R C, Porfiri M and Spinello D 2004 Int. J. Numer. Meth. Engng. 61 2461
[30] Liu Y, Zhang X and Lu M W 2005 Tsinghua Science and Technology 10 61 (in English)
[31] Liu Y, Zhang X and Lu M W 2005 Numer. Heat Transfer 47 257
[32] Sladek J, Sladek V and Atluri S N 2001 Comp. Modeling Engng. Sci. 2 423
[33] Sladek J, Sladek V and Hellmich C 2006 Comput. Mech. 38 157
[34] Cheng R J and Liew K M 2009 Comput. Mech. 45 1 endfootnotesize
[1] Improved reproducing kernel particle method for piezoelectric materials
Ji-Chao Ma(马吉超), Gao-Feng Wei(魏高峰), Dan-Dan Liu(刘丹丹). Chin. Phys. B, 2018, 27(1): 010201.
[2] Topology optimization using the improved element-free Galerkin method for elasticity
Yi Wu(吴意), Yong-Qi Ma(马永其), Wei Feng(冯伟), Yu-Min Cheng(程玉民). Chin. Phys. B, 2017, 26(8): 080203.
[3] Meshless analysis of an improved element-free Galerkin method for linear and nonlinear elliptic problems
Yao-Zong Tang(唐耀宗), Xiao-Lin Li(李小林). Chin. Phys. B, 2017, 26(3): 030203.
[4] Two-dimensional fracture analysis of piezoelectric material based on the scaled boundary node method
Shen-Shen Chen(陈莘莘), Juan Wang(王娟), Qing-Hua Li(李庆华). Chin. Phys. B, 2016, 25(4): 040203.
[5] Solving unsteady Schrödinger equation using the improved element-free Galerkin method
Rong-Jun Cheng(程荣军) and Yu-Min Cheng(程玉民). Chin. Phys. B, 2016, 25(2): 020203.
[6] Hybrid natural element method for large deformation elastoplasticity problems
Ma Yong-Qi (马永其), Zhou Yan-Kai (周延凯). Chin. Phys. B, 2015, 24(3): 030204.
[7] Analysis of elastoplasticity problems using an improved complex variable element-free Galerkin method
Cheng Yu-Min (程玉民), Liu Chao (刘超), Bai Fu-Nong (白福浓), Peng Miao-Juan (彭妙娟). Chin. Phys. B, 2015, 24(10): 100202.
[8] Hybrid natural element method for viscoelasticity problems
Zhou Yan-Kai (周延凯), Ma Yong-Qi (马永其), Dong Yi (董轶), Feng Wei (冯伟). Chin. Phys. B, 2015, 24(1): 010204.
[9] A meshless algorithm with moving least square approximations for elliptic Signorini problems
Wang Yan-Chong (王延冲), Li Xiao-Lin (李小林). Chin. Phys. B, 2014, 23(9): 090202.
[10] An interpolating reproducing kernel particle method for two-dimensional scatter points
Qin Yi-Xiao (秦义校), Liu Ying-Ying (刘营营), Li Zhong-Hua (李中华), Yang Ming (杨明). Chin. Phys. B, 2014, 23(7): 070207.
[11] A meshless method based on moving Kriging interpolation for a two-dimensional time-fractional diffusion equation
Ge Hong-Xia (葛红霞), Cheng Rong-Jun (程荣军). Chin. Phys. B, 2014, 23(4): 040203.
[12] Analysis of variable coefficient advection–diffusion problems via complex variable reproducing kernel particle method
Weng Yun-Jie (翁云杰), Cheng Yu-Min (程玉民). Chin. Phys. B, 2013, 22(9): 090204.
[13] A complex variable meshless local Petrov-Galerkin method for transient heat conduction problems
Wang Qi-Fang (王启防), Dai Bao-Dong (戴保东), Li Zhen-Feng (栗振锋). Chin. Phys. B, 2013, 22(8): 080203.
[14] A meshless Galerkin method with moving least square approximations for infinite elastic solids
Li Xiao-Lin (李小林), Li Shu-Ling (李淑玲). Chin. Phys. B, 2013, 22(8): 080204.
[15] Analysis of the generalized Camassa and Holm equation with the improved element-free Galerkin method
Cheng Rong-Jun, Wei Qi. Chin. Phys. B, 2013, 22(6): 060209.
No Suggested Reading articles found!