Please wait a minute...
Chin. Phys. B, 2010, Vol. 19(5): 058701    DOI: 10.1088/1674-1056/19/5/058701
Prev   Next  

A method for extracting human gait series from accelerometer signals based on the ensemble empirical mode decomposition

Fu Mao-Jing(符懋敬)a), Zhuang Jian-Jun(庄建军)a), Hou Feng-Zhen(侯凤贞)a)b), Zhan Qing-Bo(展庆波) a),Shao Yi(邵毅)a), and Ning Xin-Bao(宁新宝)a)
a Key Laboratory of Modern Acoustics, Institute for Biomedical Electronic Engineering, Department of Electronic Science and Engineering, Nanjing University, Nanjing 210093, China; b Division of Basic Science, China Pharmaceutical University, Nanjing 210009, China
Abstract  In this paper, the ensemble empirical mode decomposition (EEMD) is applied to analyse accelerometer signals collected during human normal walking. First, the self-adaptive feature of EEMD is utilised to decompose the accelerometer signals, thus sifting out several intrinsic mode functions (IMFs) at disparate scales. Then, gait series can be extracted through peak detection from the eigen IMF that best represents gait rhythmicity. Compared with the method based on the empirical mode decomposition (EMD), the EEMD-based method has following advantages: it remarkably improves the detection rate of peak values hidden in the original accelerometer signal, even when the signal is severely contaminated by the intermittent noises; this method effectively prevents the phenomenon of mode mixing found in the process of EMD. And a reasonable selection of parameters for the stop-filtering criteria can improve the calculation speed of the EEMD-based method. Meanwhile, the endpoint effect can be suppressed by using the auto regressive and moving average model to extend a short-time series in dual directions. The results suggest that EEMD is a powerful tool for extraction of gait rhythmicity and it also provides valuable clues for extracting eigen rhythm of other physiological signals.
Keywords:  ensemble empirical mode decomposition      gait series      peak detection      intrinsic mode functions  
Received:  18 August 2009      Revised:  08 September 2009      Accepted manuscript online: 
PACS:  87.85.Ng (Biological signal processing)  
  87.19.rs (Movement)  
  87.19.L- (Neuroscience)  
  02.30.Uu (Integral transforms)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 60501003 and 60701002).

Cite this article: 

Fu Mao-Jing(符懋敬), Zhuang Jian-Jun(庄建军), Hou Feng-Zhen(侯凤贞), Zhan Qing-Bo(展庆波),Shao Yi(邵毅), and Ning Xin-Bao(宁新宝) A method for extracting human gait series from accelerometer signals based on the ensemble empirical mode decomposition 2010 Chin. Phys. B 19 058701

[1] Costa M, Peng C K, Goldberger A L and Jeffrey M H 2003 Phys. A 330 53
[2] Ashkenazy Y, Jeffrey M H, Ivanov P C and Stanley H E 2002 Phys. A 316 662
[3] Zhuang J J, Ning X B, Yang X D, Hou F Z and Huo C Y 2008 Chin. Phys. B 17 852
[4] Rossitza B, Nir G, Leor G, Chava P and Jeffrey M H 2006 Eur. J. Neurosci. 24 1815
[5] Zhuang J J, Ning X B, Yang X, Hou F Z and Huo C Y 2008 J. Nanjing Univ. 44 57 (in Chinese)
[6] Goldberger A L, Amaral L A N, Jeffrey M H, Ivanov P C, Peng C K and Stanley H E 2002 Proc. Nat. Aca. Sci. 99 2466
[7] Daubechies I 1992 Ten Lectures on Wavelets (Philadelphia: Society for Industrial and Applied Mathematics) p194
[8] Li H G and Meng G 2004 Acta Phys. Sin. 53 2069 (in Chinese)
[9] Gong Z Q, Zou M W, Gao X Q and Dong W J 2005 Acta Phys. Sin. 54 3947 (in Chinese)
[10] Wan S Q, Feng G L, Dong W J, Li J P, Gao X Q and He W P 2005 Chin. Phys. 14 628
[11] Zou M W, Feng G L and Gao X Q 2006 Chin. Phys. 15 1384
[12] Liang H L, Lin Q H and Chen J D Z 2005 IEEE Trans. Biomed. Eng. 52 1692
[13] Wu Z and Huang N E 2009 Advances in Adaptive Data Analysis 1 1
[14] Huang N E, Shen Z, Long S R, Wu M C, Shih H H, Zheng Q, Yen N C, Tung C C and Liu H H 1998 Proc. R. Soc. Lond. 454 903
[15] Huang N E, Shen Z and Long S R 1999 Ann. Rev. Flu. Mech. 21 417
[16] Jeffrey M H, Lowenthal J, Herman T, Gruendlinger L, Peretz C and Giladi N 2007 Eur. J. Neurosci. 26 2369
[17] Yogev G, Giladi N, Peretz C, Springer S, Simon E S and Jeffrey M H 2005 Eur. J. Neurosci. 22 1248
[1] A new viewpoint and model of neural signal generation and transmission: Signal transmission on myelinated neuron
Zuoxian Xiang(向左鲜), Chuanxiang Tang(唐传祥), Lixin Yan(颜立新), Chao Chang(常超)†, and Guozhi Liu(刘国治)‡. Chin. Phys. B, 2020, 29(10): 108701.
[2] Stochastic resonance and synchronization behaviors of excitatory-inhibitory small-world network subjected to electromagnetic induction
Xiao-Han Zhang(张晓函), Shen-Quan Liu(刘深泉). Chin. Phys. B, 2018, 27(4): 040501.
[3] Wavelet optimization for applying continuous wavelet transform to maternal electrocardiogram component enhancing
Qiong Yu(于琼), Qun Guan(管群), Ping Li(李萍), Tie-Bing Liu(刘铁兵), Jun-Feng Si(司峻峰), Ying Zhao(肇莹), Hong-Xing Liu(刘红星), Yuan-Qing Wang(王元庆). Chin. Phys. B, 2017, 26(11): 118702.
[4] Some regularity on how to locate electrodes for higher fECG SNRs
Zhang Jie-Min (张洁敏), Huang Xiao-Lin (黄晓林), Guan Qun (管群), Liu Tie-Bing (刘铁兵), Li Ping (李萍), Zhao Ying (肇莹), Liu Hong-Xing (刘红星). Chin. Phys. B, 2015, 24(3): 038702.
[5] Trends in ultrashort and ultrahigh power laser pulses based on optical parametric chirped pulse amplification
Xu Lu (徐露), Yu Liang-Hong (於亮红), Chu Yu-Xi (储玉喜), Gan Ze-Biao (甘泽彪), Liang Xiao-Yan (梁晓燕), Li Ru-Xin (李儒新), Xu Zhi-Zhan (徐至展). Chin. Phys. B, 2015, 24(1): 018704.
[6] Cardiac electrical activity imaging of patients with CRBBB or CLBBB in magnetocardiography
Zhu Jun-Jie (朱俊杰), Jiang Shi-Qin (蒋式勤), Wang Wei-Yuan (王伟远), Zhao Chen (赵晨), Wu Yan-Hua (吴燕华), Luo Ming (罗明), Quan Wei-Wei (权薇薇). Chin. Phys. B, 2014, 23(4): 048702.
[7] Characterizing neural activities evoked by manual acupuncture through spiking irregularity measures
Xue Ming (薛明), Wang Jiang (王江), Deng Bin (邓斌), Wei Xi-Le (魏熙乐), Yu Hai-Tao (于海涛), Chen Ying-Yuan (陈颖源). Chin. Phys. B, 2013, 22(9): 098703.
[8] Measurements, characteristics, and origin of new electromagnetic interference on magnetocardiographic measurements
Gu Hong-Fang (谷红芳),Cai Wen-Yan (蔡文艳),Wei Yu-Ke (魏玉科),Liu Zheng-Hao (刘政豪),Wang Qian (王倩),Wang Yue (王越),Dai Yuan-Dong (戴远东),Ma Ping (马平). Chin. Phys. B, 2012, 21(4): 040702.
[9] Symbolic transfer entropy-based premature signal analysis
Wang Jun(王俊) and Yu Zheng-Feng(余正锋) . Chin. Phys. B, 2012, 21(1): 018702.
[10] Using three-dimensional discrete spherical Fourier descriptors based on surface curvature voxels for pollen particle recognition
Xie Yong-Hua(谢永华) and Michael OhEigeartaigh. Chin. Phys. B, 2010, 19(11): 110601.
[11] Inverse computation for cardiac sources using single current dipole and current multipole models
Wang Qian(王倩),Ma Ping(马平),Lu Hong(陆宏), Tang Xue-Zheng(唐雪正),Hua Ning(华宁), and Tang Fa-Kuan(唐发宽) . Chin. Phys. B, 2009, 18(12): 5566-5574.
[12] Blind source separation of multichannel electroencephalogram based on wavelet transform and ICA
You Rong-Yi (游荣义), Chen Zhong (陈忠). Chin. Phys. B, 2005, 14(11): 2176-2180.
No Suggested Reading articles found!