Abstract Reasonable approximations are introduced to investigate the real scalar field scattering in the nearly extremal Schwarzschild–de Sitter (SdS) space. The approximations naturally lead to the invertible x(r) and the global replacement of the true potential by a P?shl–Teller one. Meanwhile, the Schrdinger-like wave equation is transformed into a solvable form. Our numerical solutions to the wave equation show that the wave is characteristically similar to the harmonic under the tortoise coordinate x, while the wave piles up near the two horizons and the wavelength tends to its maximum as the potential approaches to the peak under the radial coordinate r.
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.