Please wait a minute...
Chin. Phys. B, 2010, Vol. 19(11): 110403    DOI: 10.1088/1674-1056/19/11/110403
GENERAL Prev   Next  

Real scalar field scattering in the nearly extremal Schwarzschildben--de Sitter space

Guo Guang-Hai(郭广海)
School of Mathematics and Physics, Qingdao University of Science and Technology, Qingdao 266061, China
Abstract  Reasonable approximations are introduced to investigate the real scalar field scattering in the nearly extremal Schwarzschild–de Sitter (SdS) space. The approximations naturally lead to the invertible x(r) and the global replacement of the true potential by a P?shl–Teller one. Meanwhile, the Schr$\ddot{\rm o}$dinger-like wave equation is transformed into a solvable form. Our numerical solutions to the wave equation show that the wave is characteristically similar to the harmonic under the tortoise coordinate x, while the wave piles up near the two horizons and the wavelength tends to its maximum as the potential approaches to the peak under the radial coordinate r.
Keywords:  scalar field      PÖshl–Teller potential      near extremal SdS space  
Received:  12 April 2010      Revised:  06 May 2010      Accepted manuscript online: 
PACS:  04.20.-q (Classical general relativity)  
Fund: Project supported by Doctoral Fund of QUST (Grant No. 0022171).

Cite this article: 

Guo Guang-Hai(郭广海) Real scalar field scattering in the nearly extremal Schwarzschildben--de Sitter space 2010 Chin. Phys. B 19 110403

[1] Hawking S W 1974 Nature 248 30
[2] Yang B 2007 Acta Phys. Sin. 56 6772 (in Chinese)
[3] Zhang J Y and Fan J R 2007 Chin. Phys. 16 3879
[4] Han Y W, Hong Y and Yang S Z 2007 Acta Phys. Sin. 56 10 (in Chinese)
[5] Zhang L C, Hu S Q, Li H F and Zhao R 2008 Acta Phys. Sin. bf 57 3328 (in Chinese)
[6] Meng Q M, Wang S, Jiang J J and Deng D L 2008 Chin. Phys. B 17 2811
[7] Lin K, Yang S Z and Zeng X X 2008 Chin. Phys. B 17 2804
[8] Zeng X X, Yang S Z and Chen D Y 2008 Chin. Phys. B 17 1629
[9] Yang B 2008 Acta Phys. Sin. 57 2614 (in Chinese)
[10] Yang B 2008 Acta Phys. Sin. 57 1278 (in Chinese)
[11] Hu S Q, Zhang L C and Zhao R 2009 Acta Phys. Sin. 58 6798 (in Chinese)
[12] Lin K and Yang S Z 2009 Chin. Phys. B 18 2154
[13] Jiang J J and Li C A 2009 Chin. Phys. B 18 451
[14] Zeng X X and Yang S Z 2009 Chin. Phys. B 18 462
[15] Han Y W, Bao Z Q and Hong Y 2009 Chin. Phys. B 18 62
[16] Zhou S W, Liu B, Huang J L and Liu W B 2010 Chin. Phys. B 19 010403
[17] Higuchi A, Matsas G E A and Sudarsky D 1998 Phys. Rev. D bf 58 104021
[18] Grispino L C B, Higuchi A and Matsas G E A 2000 Class. Quantum Grav. 17 19
[19] Brady P R, Chambers C M, Krivan W and Laguna P 1997 Phys. Rev. D 55 7538
[20] Brady P R, Chambers C M, Laarakkers W G and Poisson E 1999 Phys. Rev. D 60 064003
[21] Brevik I and Simonsen B 2001 Gen. Relativ. Gravit. 33 1839
[22] Tian J X, Gui Y X, Guo G H, L"u Y, Zhang S H and Wang W 2003 Gene. Relativ. Grav. 35 1473
[23] Guo G H, Gui Y X and Tian J X 2005 Gen. Relativ. Gravit. 37 1323
[24] Liu M L, Liu H Y, Zhang J F and Yu F 2008 Chin. Phys. B bf 17 1633
[25] Cardoso V and Lemos J P S 2003 Phys. Rev. D 67 084020
[26] Moss I G and Norman J P 2002 Class. Quantum Grav. 19 2323
[27] Setare M R 2005 Gen. Relativ. Gravit. 37 1411 endfootnotesize
[1] Complex frequencies of a massless scalar field in loop quantum black hole spacetime
Chen Ju-Hua(陈菊华) and Wang Yong-Jiu(王永久) . Chin. Phys. B, 2011, 20(3): 030401.
[2] Resonant frequencies of massless scalar field in rotating black-brane spacetime
Jing Ji-Liang(荆继良) and Pan Qi-Yuan(潘启沅). Chin. Phys. B, 2008, 17(6): 1985-1989.
[3] Real scalar field scattering with polynomial approximation around Schwarzschild--de Sitter black-hole
Liu Mo-Lin(刘墨林), Liu Hong-Ya(刘宏亚), Zhang Jing-Fei(张敬飞), and Yu Fei(于飞). Chin. Phys. B, 2008, 17(5): 1633-1639.
[4] Entropy of quantum field in toroidal black hole without brick wall
Wang Bo-Bo(王波波) . Chin. Phys. B, 2008, 17(2): 467-472.
[5] The double Lagrangian with U(1, J) symmetry and its applications to the cosmology
Wu Ya-Bo(吴亚波), Lü Jian-Bo(吕剑波), He Jing(贺敬), and Fu Ming-Hui(付明慧). Chin. Phys. B, 2007, 16(12): 3560-3565.
[6] New insights to old problems
Lee T. D. (李政道). Chin. Phys. B, 2006, 15(6): 1125-1133.
[7] The Casimir effect of Reissner--Nordström black hole
Xiao Kui(肖奎) and Liu Wen-Biao(刘文彪). Chin. Phys. B, 2006, 15(12): 3044-3048.
[8] Chaotic evolution of the coupled scalar fields system during inflation
Chen Ju-Hua (陈菊华), Wang Yong-Jiu (王永久). Chin. Phys. B, 2004, 13(5): 583-588.
[9] STATIC SPHERICALLY SYMMETRIC SOLUTION OF EINSTEIN GRAVITY COUPLED TO ELECTRO-MAGNETIC AND SCALAR FIELDS
Chen Guang (陈光). Chin. Phys. B, 2001, 10(9): 787-789.
No Suggested Reading articles found!