Please wait a minute...
Chin. Phys. B, 2008, Vol. 17(11): 4153-4157    DOI: 10.1088/1674-1056/17/11/032
THE PHYSICS OF ELEMENTARY PARTICLES AND FIELDS Prev   Next  

Classical integrability of strings in $\gamma$-deformed backgrounds

Xie Xiao-Ning (解小宁)ac, Yue Rui-Hong (岳瑞宏)bc 
a SKLLQG, Institute of Earth Environment, Chinese Academy of Sciences, Xi'an 710075, ChinaDepartment of Physics, Ningbo University, Ningbo 315211, China; b Institute of Modern Physics, Northwest University, Xi'an 710069, China
Abstract  This paper considers classical strings propagating in $\gamma$-deformed $AdS_3\times S^3$ backgrounds generated by certain shift T-dualities accompanied (TsT) transformations on $S^3$ and $AdS_3$, respectively. It finds that the $U(1)$ currents of strings with the twisted boundary conditions are equal to those in $\gamma$-deformed backgrounds generated by TsT transformations on both $S^3$ and $AdS_3$. Applying the TsT transformations, it derives the local Lax connections and the monodromy matrices in $\gamma$-deformed backgrounds with the spectral parameter which ensure the classical integrability of the string theories.
Keywords:  TsT transformation      Lax connection      monodromy matrix      integrability  
Received:  09 August 2007      Revised:  02 March 2008      Accepted manuscript online: 
PACS:  11.25.-w (Strings and branes)  
  11.10.Lm (Nonlinear or nonlocal theories and models)  
  11.15.-q (Gauge field theories)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos 90403019 and 10575080).

Cite this article: 

Xie Xiao-Ning (解小宁), Yue Rui-Hong (岳瑞宏) Classical integrability of strings in $\gamma$-deformed backgrounds 2008 Chin. Phys. B 17 4153

[1] Painlevé integrability of the supersymmetric Ito equation
Feng-Jie Cen(岑锋杰), Yan-Dan Zhao(赵燕丹), Shuang-Yun Fang(房霜韵), Huan Meng(孟欢), Jun Yu(俞军). Chin. Phys. B, 2019, 28(9): 090201.
[2] Integrability classification and exact solutions to generalized variable-coefficient nonlinear evolution equation
Han-Ze Liu(刘汉泽), Li-Xiang Zhang(张丽香). Chin. Phys. B, 2018, 27(4): 040202.
[3] Painlevé integrability of generalized fifth-order KdV equation with variable coefficients: Exact solutions and their interactions
Xu Gui-Qiong (徐桂琼). Chin. Phys. B, 2013, 22(5): 050203.
[4] Study on an extended Boussinesq equation
Chen Chun-Li(陈春丽), Zhang Jin E(张近), and Li Yi-Shen(李翊神). Chin. Phys. B, 2007, 16(8): 2167-2179.
[5] A connection theory for a nonlinear differential constrained system
Xu Zhi-Xin (许志新), Guo Yong-Xin (郭永新), Wu Wei (吴炜). Chin. Phys. B, 2002, 11(12): 1228-1233.
No Suggested Reading articles found!