Please wait a minute...
Chinese Physics, 2007, Vol. 16(3): 578-581    DOI: 10.1088/1009-1963/16/3/003
GENERAL Prev   Next  

Asymptotic solution of a sea--air oscillator for ENSO mechanism

Mo Jia-Qi(莫嘉琪)a)b)†, Lin Wan-Tao(林万涛)c), and Wang Hui(王辉)d)
a Anhui Normal University, Wuhu 241000, China; b Division of Computational Science, E-Institutes of Shanghai Universities at SJTU, Shanghai 200240, China; c LASG, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029, China; d Chinese Academy of Meteorological Sciences, Beijing 100081, China
Abstract  The EI Niño/La Niña--Southern Oscillation (ENSO) is an interannual phenomenon involved in the tropical Pacific ocean--atmosphere interactions. In this paper, a class of coupled system of the ENSO mechanism is considered. Based on a class of oscillator of ENSO model, the asymptotic solution of a corresponding problem is studied by employing the approximate method. It is proved from the results that the perturbation method can be used for analysing the sea surface temperature anomaly in the equatorial eastern Pacific and the thermocline depth anomaly of the atmosphere--ocean oscillation for the ENSO model.
Keywords:  nonlinear system      asymptotic method      El Niño--Southern Oscillator model  
Received:  05 July 2006      Revised:  07 July 2006      Accepted manuscript online: 
PACS:  92.10.am (El Nino Southern Oscillation)  
  92.05.Hj (Physical and chemical properties of seawater)  
  92.60.Cc (Ocean/atmosphere interactions, air/sea constituent fluxes)  
  93.30.Pm (Pacific Ocean)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos~40676016 and 10471039), the National Key Basics Research Special Foundation of China (Grant No~2004CB418304), the Key Basic Research Foundation of Chinese Academy of Sciences (Grant No~KZCX3-SW-221) and in part by E-Institutes of Shanghai Municipal Education Commission (Grant No~NE03004).

Cite this article: 

Mo Jia-Qi(莫嘉琪), Lin Wan-Tao(林万涛), and Wang Hui(王辉) Asymptotic solution of a sea--air oscillator for ENSO mechanism 2007 Chinese Physics 16 578

[1] Exponential sine chaotification model for enhancing chaos and its hardware implementation
Rui Wang(王蕊), Meng-Yang Li(李孟洋), and Hai-Jun Luo(罗海军). Chin. Phys. B, 2022, 31(8): 080508.
[2] A class of asymptotic solution for the time delay wind field model of an ocean
Zhou Xian-Chun (周先春), Shi Lan-Fang (石兰芳), Mo Jia-Qi (莫嘉琪). Chin. Phys. B, 2014, 23(4): 040202.
[3] Hopf bifurcation control for a coupled nonlinear relativerotation system with time-delay feedbacks
Liu Shuang (刘爽), Li Xue (李雪), Tan Shu-Xian (谈书贤), Li Hai-Bin (李海滨). Chin. Phys. B, 2014, 23(10): 104502.
[4] Asymptotic solving method for sea–air coupled oscillator ENSO model
Zhou Xian-Chun(周先春), Yao Jing-Sun(姚静荪)), and Mo Jia-Qi(莫嘉琪) . Chin. Phys. B, 2012, 21(3): 030201.
[5] Stability analysis of nonlinear Roesser-type two-dimensional systems via homogenous polynomial technique
Zhang Tie-Yan (张铁岩), Zhao Yan (赵琰), Xie Xiang-Peng (解相朋). Chin. Phys. B, 2012, 21(12): 120503.
[6] Asymptotic solving method for period solution to a class of disturbed nonlinear evolution equation
Yao Jing-Sun (姚静荪), Lin Wan-Tao (林万涛), Du Zeng-Ji (杜增吉), Mo Jia-Qi (莫嘉琪). Chin. Phys. B, 2012, 21(12): 120205.
[7] Robust fault-sensitive synchronization of a class of nonlinear systems
Xu Shi-Yun(徐式蕴), Yang Ying(杨莹), Liu Xian(刘仙), Tang Yong(汤涌), and Sun Hua-Dong(孙华东) . Chin. Phys. B, 2011, 20(2): 020509.
[8] Berry phase in a generalized nonlinear two-level system
Liu Ji-Bing(刘继兵), Li Jia-Hua(李家华), Song Pei-Jun(宋佩君), and Li Wei-Bin(李伟斌). Chin. Phys. B, 2008, 17(1): 38-42.
[9] Synchronization of an uncertain chaotic system via recurrent neural networks
Tan Wen (谭文), Wang Yao-Nan (王耀南). Chin. Phys. B, 2005, 14(1): 72-76.
No Suggested Reading articles found!