Abstract The transient resonance of a sonoluminescence bubble has been analysed. When the bubble performs its transient resonance at the nth order harmonics of the standing waves in the liquid, the light intensity strongly depends on the amplitude of the driving pressure (proportional to its 2n power, with $n=f_r/f$, where $f_r$ is Minnaert's linear resonant frequency of the bubble and f is the frequency of driving sound). The kinetic energy of a vibrating bubble becomes maximum approximately when it is in its equilibrium size. For example, when the ambient temperature of a bubble decreases from 34℃ to 4℃, a huge increase of the light intensity emitted by it can be explained. A suggestion was made that, within the limits permitted by the phase diagrams, as high an increase in driving pressure as possible could enhance the light intensity of sonoluminescence up to four orders of magnitude.
Received: 15 September 2000
Revised: 02 March 2001
Accepted manuscript online:
PACS:
43.35.+d
(Ultrasonics, quantum acoustics, and physical effects of sound)
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.