Please wait a minute...
Chinese Physics, 2000, Vol. 9(7): 481-484    DOI: 10.1088/1009-1963/9/7/001
GENERAL   Next  

TIME-DEPENDENT LANDAU SYSTEM AND NON-ADIABATIC BERRY PHASE IN TWO DIMENSIONS

Jing Hui (景辉), Wu Jian-sheng (吴健生)
Theoretical Physics Division, Nankai Institute of Mathematics, Nankai University, Tianjin 300071, China
Abstract  By applying the time-independent unitary transformation, the time-dependent Landau system is transformed into a product of a time-independent Landau system's Hamiltonian and a factor only depending on time, which can be solved exactly. Both the invariant operator and the eigenstate are obtained. In the periodical time-dependent case, the non-adiabatic Berry's phase is also presented.
Keywords:  unitary transformation      Landau system      non-adiabatic Berry's phase  
Received:  16 November 1999      Revised:  21 February 2000      Accepted manuscript online: 
PACS:  02.10.Ud (Linear algebra)  
  02.30.Tb (Operator theory)  
  03.65.Fd (Algebraic methods)  
  03.65.Ta (Foundations of quantum mechanics; measurement theory)  

Cite this article: 

Jing Hui (景辉), Wu Jian-sheng (吴健生) TIME-DEPENDENT LANDAU SYSTEM AND NON-ADIABATIC BERRY PHASE IN TWO DIMENSIONS 2000 Chinese Physics 9 481

[1] Unitary transformation of general nonoverlapping-image multimode interference couplers with any input and output ports
Ze-Zheng Li(李泽正), Wei-Hua Han(韩伟华), Zhi-Yong Li(李智勇). Chin. Phys. B, 2020, 29(1): 014206.
[2] Deterministic and exact entanglement teleportation viathe W state
Chen Xiu-Bo(陈秀波), Wen Qiao-Yan(温巧燕), Sun Zhong-Xu(孙中旭), Shangguan Li-Ying(上官丽英), and Yang Yi-Xian(杨义先). Chin. Phys. B, 2010, 19(1): 010303.
[3] Probabilistic teleportation of multi-particle partially entangled state
Chen Xiu-Bo(陈秀波), Du Jian-Zhong(杜建忠), Wen Qiao-Yan(温巧燕), and Zhu Fu-Chen(朱甫臣) . Chin. Phys. B, 2008, 17(3): 771-777.
[4] Scheme for probabilistic remotely preparing a multi-particle entangled GHZ state
Ma Peng-Cheng(马鹏程) and Zhan You-Bang(詹佑邦). Chin. Phys. B, 2008, 17(2): 445-450.
[5] Density matrix for an electron confined in quantum dots under uniform magnetic field and static electrical field
Pang Qian-Jun(庞乾骏). Chin. Phys. B, 2007, 16(1): 16-22.
[6] Multi-party dense coding in non-symmetric quantum channel
Fu Chang-Bao(付长宝), Xia Yan(夏岩), and Zhang Shou(张寿). Chin. Phys. B, 2006, 15(8): 1682-1685.
[7] Probabilistic teleportation of a non-symmetric three-particle state
Chen Xiu-Bo (陈秀波), Wen Qiao-Yan (温巧燕), Zhu Fu-Chen (朱甫臣). Chin. Phys. B, 2006, 15(10): 2240-2245.
[8] Probabilistic teleportation of an arbitrary three-particle state
Lin Xiu (林秀), Li Hong-Cai (李洪才). Chin. Phys. B, 2005, 14(9): 1724-1731.
[9] Generation of the nonlocal quantum entanglement of three three-level particles by local operations
Jin Xing-Ri (金星日), Zhang Ying-Qiao (张英俏), Jin Zhe (金哲), Zhang Shou (张寿). Chin. Phys. B, 2005, 14(10): 1936-1941.
[10] Photon-magnon interaction process: a mechanism of resonance linewidths of ferromagnet
Li Liang-Sheng (李粮生), Shi Qing-Fan (史庆藩). Chin. Phys. B, 2005, 14(1): 110-114.
[11] Teleportation of N-particle entangled W state via entanglement swapping
Zhan You-Bang (詹佑邦). Chin. Phys. B, 2004, 13(11): 1801-1805.
[12] Coherent Landau states with gauge invariance
Tian Xu (田旭), Zhao Zhong-Yun (赵中云), Li Ming-Fa (黎明发). Chin. Phys. B, 2004, 13(10): 1649-1651.
[13] Probabilistic teleportation of an arbitrary three-particle state via a partial entangled four-particle state and a partial entangled pair
Dai Hong-Yi (戴宏毅), Li Cheng-Zu (李承祖), Chen Ping-Xing (陈平行). Chin. Phys. B, 2003, 12(12): 1354-1359.
[14] Teleportation of an arbitrary three-particle state
Chen Li-Bing (陈立冰). Chin. Phys. B, 2002, 11(10): 999-1003.
[15] MULTIPHOTON JAYNES-CUMMINGS MODEL SOLVED VIA SUPERSYMMETRIC UNITARY TRANSFORMATION
Lu Huai-xin (逯怀新), Wang Xiao-qin (王晓芹). Chin. Phys. B, 2000, 9(8): 568-571.
No Suggested Reading articles found!