Please wait a minute...
Chin. Phys. B, 2025, Vol. 34(2): 028902    DOI: 10.1088/1674-1056/ad9734
INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY Prev  

Critical station identification of metro networks based on the integrated topological-functional algorithm: A case study of Chengdu

Zi-Qiang Zeng(曾自强), Sheng-Jie He(何圣洁), and Wang Tian(田旺)
Business School, Sichuan University, Chengdu 610065, China
Abstract  As a key mode of transportation, urban metro networks have significantly enhanced urban traffic environments and travel efficiency, making the identification of critical stations within these networks increasingly essential. This study presents a novel integrated topological-functional (ITF) algorithm for identifying critical nodes, combining topological metrics such as K-shell decomposition, node information entropy, and neighbor overlapping interaction with the functional attributes of passenger flow operations, while also considering the coupling effects between metro and bus networks. Using the Chengdu metro network as a case study, the effectiveness of the algorithm under different conditions is validated. The results indicate significant differences in passenger flow patterns between working and non-working days, leading to varying sets of critical nodes across these scenarios. Moreover, the ITF algorithm demonstrates a marked improvement in the accuracy of critical node identification compared to existing methods. This conclusion is supported by the analysis of changes in the overall network structure and relative global operational efficiency following targeted attacks on the identified critical nodes. The findings provide valuable insight into urban transportation planning, offering theoretical and practical guidance for improving metro network safety and resilience.
Keywords:  critical node      metro network      topological structure      functional operation  
Received:  03 October 2024      Revised:  20 November 2024      Accepted manuscript online:  26 November 2024
PACS:  89.75.Hc (Networks and genealogical trees)  
  89.40.Bb (Land transportation)  
  05.10.-a (Computational methods in statistical physics and nonlinear dynamics)  
  45.70.Vn (Granular models of complex systems; traffic flow)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 71971150), the Project of Research Center for System Sciences and Enterprise Development (Grant No. Xq16B05), and the Fundamental Research Funds for the Central Universities of China (Grant No. SXYPY202313).
Corresponding Authors:  Zi-Qiang Zeng     E-mail:  zengziqiang@scu.edu.cn

Cite this article: 

Zi-Qiang Zeng(曾自强), Sheng-Jie He(何圣洁), and Wang Tian(田旺) Critical station identification of metro networks based on the integrated topological-functional algorithm: A case study of Chengdu 2025 Chin. Phys. B 34 028902

[1] Leite D and De Bacco C 2024 Nat. Commun. 15 7981
[2] De Jong M, Mu R, Stead D, Ma Y and Xi B 2010 J. Transp. Geogr. 18 301
[3] Xu Z and Chopra S S 2023 Nat. Commun. 14 4291
[4] Anupriya, Graham D J, Bansal P, Hörcher D and Anderson R 2023 Physica A 609 128390
[5] Huang W, Shuai B, Sun Y, Wang Y and Antwi E 2018 Transport. Res. A-Pol. 111 292
[6] Derrible S and Kennedy C 2010 Physica A 389 3678
[7] Sun D and Guan S 2016 Transport. Res. A-Pol. 94 348
[8] Yang Z, Dong X and Guo L 2023 Reliab. Eng. Syst. Safe 229 108888
[9] Wang S, Lv W, Zhang J, Luan S, Chen C and Gu X 2021 Reliab. Eng. Syst. Safe 207 107313
[10] Ma F, Shi W, Yuen K F, Sun Q, Xu X, Wang Y and Wang Z 2020 J. Clean Prod. 265 121747
[11] Li M, Liu R R, Lü L, Hu M B, Xu S and Zhang Y C 2021 Phys. Rep. 907 1
[12] Freeman L C 1978 Soc. Networks 1 215
[13] Wang F and Hu H 2021 Measurement 179 109449
[14] Sabidussi G 1966 Psychometrika 31 581
[15] Kitsak M, Gallos L K, Havlin S, Liljeros F, Muchnik L, Stanley H E and Makse H A 2010 Nat. Phys. 6 888
[16] De Domenico M, Solé-Ribalta A, Omodei E, Gómez S and Arenas A 2015 Nat. Commun. 6 6868
[17] Cui D X, He J L, Xiao Z F and RenWP 2023 Chin. Phys. B 32 098904
[18] Gao C, Fan Y, Jiang S, Deng Y, Liu J and Li X 2022 IEEE T. Intell. Transp. 23 6509
[19] Engsig M, Tejedor A, Moreno Y, Foufoula-Georgiou E and Kasmi C 2024 Nat. Commun. 15 56
[20] Ai D, Liu X L, Kang W Z, Li L N, Lü S Q and Liu Y 2023 Chin. Phys. B 32 118902
[21] Huang W, Li H, Yin Y, Zhang Z, Xie A, Zhang Y and Cheng G 2024 Reliab. Eng. Syst. Safe 242 109766
[22] Duan D L, Ji S Y and Yuan Z W 2024 Chin. Phys. B 33 040502
[23] Lin J and Ban Y 2013 Transp. Rev. 33 658
[24] Kopsidas A, Douvaras A and Kepaptsoglou K 2023 Appl. Netw. Sci. 8 69
[25] Lai Q and Zhang H H 2022 Chin. Phys. B 31 068905
[26] Chen C, Wang S, Zhang J and Gu X 2023 J. Infrastruct. Syst. 29 04022043
[27] Xu M, Wu J, Liu M, Xiao Y, Wang H and Hu D 2019 IEEE T. Intell. Transp. 20 583
[28] Jing W, Xu X and Pu Y 2020 Reliab. Eng. Syst. Safe 204 107204
[29] Xia F, Wang J, Kong X, Zhang D and Wang Z 2020 IEEE T. Intell. Transp. 21 2840
[30] Zhang J, Zhou Y, Wang S and Min Q 2024 Chaos Soliton. Fract. 178 114379
[31] Wang L, Zhang S, Szücs G and Wang Y 2024 Reliab. Eng. Syst. Safe 244 109956
[32] Shanmukhappa T, Ho IWH, Tse C K and Leung K K 2019 IEEE Circ. Syst. Mag. 19 39
[33] Jin Z, Qinghuai L and Xiaotong H E 2013 J. Beijing Jiaotong Univ. 37 78
[34] Fang X, Lu L, Li Y and Hong Y 2023 Transport. Res. D-Tr. E 121 103819
[35] Shannon C E 1948 The Bell System Technical Journal 27 379
[36] Zhang H, Zhong S, Deng Y and Cheong K H 2022 IEEE T. Fuzzy Syst. 30 3284
[37] Yang X and Xiao F 2021 Knowl-Based Syst. 227 107198
[38] Liu J G, Ren Z M and Guo Q 2013 Physica A 392 4154
[39] Yue M, Kang C, Andris C, Qin K, Liu Y, Meng Q 2018 T. Gis. 22 855
[40] Xu P C, Lu Q C, Xie C and Cheong T 2024 Transport Res. A-Pol. 179 103907
[41] Zhang J, Wang S and Wang X 2018 Physica A 496 72
[42] Nguyen Q, Pham H D, Cassi D and Bellingeri M 2019 Physica A 530 121561
[43] Sheng J, Dai J,Wang B, Duan G, Long J, Zhang J, Guan K, Hu S, Chen L and Guan W 2020 Physica A 541 123262
[44] Hong L, Yan Y, Ouyang M, Tian H and He X 2017 Reliab. Eng. Syst. Safe 158 58
[1] Topological structure effect on far-infrared spectra in a GaAs/InAs nanoring
Gu Li-Ying(谷利英), Li Yan-Fang(李艳芳), Chu Wei-Dong(楚卫东), and Wei Ying-Hui(卫英慧) . Chin. Phys. B, 2012, 21(3): 037301.
[2] Community detection with consideration of non-topological information
Zou Sheng-Rong(邹盛荣), Peng Yu-Jing(彭昱静),Liu Ai-Fen(刘爱芬), Xu Xiu-Lian(徐秀莲),and He Da-Ren(何大韧) . Chin. Phys. B, 2011, 20(1): 018902.
[3] Topological structure of Gauss--Bonnet--Chern theorem and $\tilde{p}$-branes
Tian Miao(田苗), Zhang Xin-Hui(张欣会), and Duan Yi-Shi(段一士). Chin. Phys. B, 2009, 18(4): 1301-1305.
No Suggested Reading articles found!