Please wait a minute...
Chin. Phys. B, 2019, Vol. 28(7): 077101    DOI: 10.1088/1674-1056/28/7/077101
Special Issue: SPECIAL TOPIC — Topological semimetals
SPECIAL TOPIC—Topological semimetals Prev   Next  

Local evolutions of nodal points in two-dimensional systems with chiral symmetry

Peiyuan Fu(符培源)1,2, Zhesen Yang(杨哲森)1,2, Jiangping Hu(胡江平)1,3,4
1 Beijing National Laboratory for Condensed Matter Physics, and Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China;
2 School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China;
3 Kavli Institute of Theoretical Sciences, University of Chinese Academy of Sciences, Beijing 100190, China;
4 Collaborative Innovation Center of Quantum Matter, Beijing 100190, China
Abstract  

Two-dimensional systems with chiral symmetry allow stable discrete band crossings (nodal points) in Brillouin zones. Here we study the local evolutions of these nodal points under chiral symmetry preserving perturbations. We find that these evolutions can be classified by different types of local k·p models around the nodal points. Several concrete examples are calculated to illustrate our results.

Keywords:  nodal points      chiral symmetry      k·p model  
Received:  09 April 2019      Accepted manuscript online: 
PACS:  71.90.+q (Other topics in electronic structure)  
  03.65.Vf (Phases: geometric; dynamic or topological)  
Fund: 

Project supported by the National Basic Research Program of China (Grant Nos. 2015CB921300 and 2017YFA0303100), the National Natural Science Foundation of China (Grant Nos. 1190020, 11534014, and 11334012), and the Strategic Priority Research Program of Chinese Academy of Sciences (Grant Nos. XDB07000000 and XDB28000000).

Corresponding Authors:  Zhesen Yang     E-mail:  yangzs@iphy.ac.cn

Cite this article: 

Peiyuan Fu(符培源), Zhesen Yang(杨哲森), Jiangping Hu(胡江平) Local evolutions of nodal points in two-dimensional systems with chiral symmetry 2019 Chin. Phys. B 28 077101

[31] Singh B, Ghosh B, Su C, Lin H, Agarwal A and Bansil A 2018 Phys. Rev. Lett. 121 226401
[1] Thouless D J, Kohmoto M, Nightingale M P and den Nijs M 1982 Phys. Rev. Lett. 49 405
[32] Xu B, Zhao L X, Marsik P, Sheveleva E, Lyzwa F, Dai Y M, Chen G F, Qiu X G and Bernhard C 2018 Phys. Rev. Lett. 121 187401
[2] Haldane F D M 1988 Phys. Rev. Lett. 61 2015
[33] Chen R, Xu D H and Zhou B 2018 Phys. Rev. B 98 235159
[3] Kosterlitz J M and Thouless D J 1973 J. Phys. C: Solid State Phys. 6 1181
[34] Benito-Matias E and Molina R A 2019 Phys. Rev. B 99 075304
[4] Bernevig B A, Hughes T A and Zhang S C 2006 Science 314 1757
[35] Ominato Y, Tatsumi S and Nomura K 2019 Phys. Rev. B 99 085205
[5] Bernevig B A and Zhang S C 2006 Phys. Rev. Lett. 96 106802
[36] Kim R, Yang B J and Kim C H 2019 Phys. Rev. B 99 045130
[6] Fu L, Kane C L and Mele E J 2006 Phys. Rev. Lett. 98 106803
[37] Hu Y J, Aulestia E I P, Tse K F, Kuo C N, Zhu J Y, Lue C S, Lai K T and Goh S K 2018 Phys. Rev. B 98 035133
[7] Fu L and Kane C L 2007 Phys. Rev. B 76 045302
[38] Habe T and Koshino M 2018 Phys. Rev. B 98 125201
[8] Fu L 2011 Phys. Rev. Lett. 106 106802
[39] Dana I, Avron Y and Zak J 1985 J. Phys. C 18 L679
[40] Chiu C K, Teo J C Y, Schnyder A P and Ryu S 2016 Rev. Mod. Phys. 88 035005
[9] Burkov A A, Hook M D and Balents L 2011 Phys. Rev. B 84 235126
[41] Hořava P 2005 Phys. Rev. Lett. 95 016405
[10] Wan X G, Turner A M, Vishwanath A and Savrasov S Y 2011 Phys. Rev. B 83 205101
[11] Soluyanov A A, Gresch D, Wang Z J, Wu Q S, Troyer M, Dai X and Bernevig B A 2015 Nature 527 495
[12] Young S M, Zaheer S, Teo J C Y, Kane C L, Mele E J and Rappe A M 2012 Phys. Rev. Lett. 108 140405
[13] Bzdusek T, Wu Q, Ruegg A, Sigrist M and Soluyanov A 2016 Nature 538 75
[14] Bradlyn B, Cano J, Wang Z, Vergniory M G, Felser C, Cava R J and Bernevig B A 2016 Science 353 5037
[15] Yan Z B, Bi R, Shen H T, Lu L, Zhang S C and Wang Z 2017 Phys. Rev. B 96 041103
[16] Yu R, Fang Z, Dai X and Weng H M 2017 Front. Phys. 12 127202
[17] Yu R, Wu Q S, Fang Z and Weng H M 2017 Phys. Rev. Lett. 119 036401
[18] Xu Q N, Yu R, Fang Z, Dai X and Weng H M 2017 Phys. Rev. B 95 045136
[19] Zhao J Z, Yu R, Weng H M and Fang Z 2016 Phys. Rev. B 94 195104
[20] Weng H M, Dai X and Fang Z 2016 J. Phys.: Condens. Matter 28 303001
[21] Hasan M Z, Xu S Y and Bian G 2015 Phys. Scr. 2015 014001
[22] Qin S S, Hu L H, Le C C, Zeng J F, Zhang F C, Fang C and Hu J P 2019 arXiv:1901.04932
[23] Le C C, Wu X X, Qin S S, Li Y X, Thomale R, Zhang F C and Hu J P 2018 Pro. Natl. Acad. Sci. USA 115 8311
[24] Le C C, Qin S S, Wu X X, Dai X, Fu P Y and Hu J P 2017 Phys. Rev. B 96 115121
[25] Xu X T, Kang Z B, Chang T R, Lin H, Bian G, Yuan Z J, Qu Z, Zhang J L and Jia S 2019 arXiv:1903.07901v1
[26] Ito S, Arita M, Haruyama J, Feng B, Chen W C, Namatame H, Taniguchi M, Cheng C M, Bian G, Tang S J, Chiang T C, Sugino O, Komori F and Matsuda I 2019 arXiv:1903.07018v1
[27] Vail O, Taylor P, Folkes P, Nichols B and de Coster G 2019 arXiv:1903.06723v1
[28] Hamilton G A, Park M J and Gilbert M J 2019 arXiv:1903.00024v1
[29] Ma J C, Deng K, Zheng L, Wu S F, Liu Z, Zhou S Y and Sun D 2019 arXiv:1902.06874v1
[30] VanGennep D, Paul T A, Yerger C W, Weir S T, Vohra Y K and Hamlin J J 2019 Phys. Rev. B 99 085204)
[31] Singh B, Ghosh B, Su C, Lin H, Agarwal A and Bansil A 2018 Phys. Rev. Lett. 121 226401
[32] Xu B, Zhao L X, Marsik P, Sheveleva E, Lyzwa F, Dai Y M, Chen G F, Qiu X G and Bernhard C 2018 Phys. Rev. Lett. 121 187401
[33] Chen R, Xu D H and Zhou B 2018 Phys. Rev. B 98 235159
[34] Benito-Matias E and Molina R A 2019 Phys. Rev. B 99 075304
[35] Ominato Y, Tatsumi S and Nomura K 2019 Phys. Rev. B 99 085205
[36] Kim R, Yang B J and Kim C H 2019 Phys. Rev. B 99 045130
[37] Hu Y J, Aulestia E I P, Tse K F, Kuo C N, Zhu J Y, Lue C S, Lai K T and Goh S K 2018 Phys. Rev. B 98 035133
[38] Habe T and Koshino M 2018 Phys. Rev. B 98 125201
[39] Dana I, Avron Y and Zak J 1985 J. Phys. C 18 L679
[40] Chiu C K, Teo J C Y, Schnyder A P and Ryu S 2016 Rev. Mod. Phys. 88 035005
[41] Hořava P 2005 Phys. Rev. Lett. 95 016405
[1] Chiral symmetry protected topological nodal superconducting phase and Majorana Fermi arc
Mei-Ling Lu(卢美玲), Yao Wang(王瑶), He-Zhi Zhang(张鹤之), Hao-Lin Chen(陈昊林), Tian-Yuan Cui(崔天元), and Xi Luo(罗熙). Chin. Phys. B, 2023, 32(2): 027301.
[2] Transport properties of a ladder with two random dimer chains
Hu Dong-Sheng(胡冬生),Zhu Chen-Ping(朱陈平),and Zhang Yong-Mei(张永梅) . Chin. Phys. B, 2011, 20(1): 017104.
No Suggested Reading articles found!