Please wait a minute...
Chin. Phys. B, 2018, Vol. 27(2): 020306    DOI: 10.1088/1674-1056/27/2/020306
GENERAL Prev   Next  

Detecting high-dimensional multipartite entanglement via some classes of measurements

Lu Liu(刘璐)1, Ting Gao(高亭)1, Fengli Yan(闫凤利)2
1. College of Mathematics and Information Science, Hebei Normal University, Shijiazhuang 050024, China;
2. College of Physics Science and Information Engineering, Hebei Normal University, Shijiazhuang 050024, China
Abstract  

Mutually unbiased bases, mutually unbiased measurements and general symmetric informationally complete measurements are three related concepts in quantum information theory. We investigate multipartite systems using these notions and present some criteria detecting entanglement of arbitrary high dimensional multi-qudit systems and multipartite systems of subsystems with different dimensions. It is proved that these criteria can detect the k-nonseparability (k is even) of multipartite qudit systems and arbitrary high dimensional multipartite systems of m subsystems with different dimensions. We show that they are more efficient and wider of application range than the previous ones. They provide experimental implementation in detecting entanglement without full quantum state tomography.

Keywords:  detection of entanglement      multipartite quantum states      mutually unbiased bases      mutually unbiased measurements      general symmetric informationally complete measurements  
Received:  31 August 2017      Revised:  21 October 2017      Accepted manuscript online: 
PACS:  03.67.Mn (Entanglement measures, witnesses, and other characterizations)  
  03.65.Ud (Entanglement and quantum nonlocality)  
Fund: 

Project supported by the National Natural Science Foundation of China (Grant Nos. 11371005 and 11475054) and the Natural Science Foundation of Hebei Province of China (Grant No. A2016205145).

Corresponding Authors:  Ting Gao, Fengli Yan     E-mail:  gaoting@hebtu.edu.cn;flyan@hebtu.edu.cn
About author:  03.67.Mn; 03.65.Ud

Cite this article: 

Lu Liu(刘璐), Ting Gao(高亭), Fengli Yan(闫凤利) Detecting high-dimensional multipartite entanglement via some classes of measurements 2018 Chin. Phys. B 27 020306

[1] Horodecki R, Horodecki P, Horodecki M and Horodecki K 2009 Rev. Mod. Phys. 81 865
[2] Nielsen M A and Chuang I L 2010 Quantum Computation and Quantum Information (Cambridge:Cambridge University Press)
[3] Ekert A K 1991 Phys. Rev. Lett. 67 661
[4] Zhang S L, Jin C H, Guo J S, Shi J H, Zou C B and Guo G C 2016 Chin. Phys. Lett. 33 120302
[5] Tan Y G and Liu Q 2016 Chin. Phys. Lett. 33 090303
[6] Gao T, Yan F L and Li Y C 2008 Europhys. Lett. 84 50001
[7] Gao T, Yan F L and Li Y C 2008 Sci. China-Phys. Mech. Astron. 51 1529
[8] Zhang S L, Jin C H, Shi J H, Guo J S, Zou X B and Guo G C 2017 Chin. Phys. Lett. 34 040302
[9] Bennett C H and Wiesner S J 1992 Phys. Rev. Lett. 69 2881
[10] Gao T, Yan F L and Wang Z X 2005 Chin. Phys. 14 893
[11] Zhao M J, Chen B and Fei S M 2015 Chin. Phys. B 24 070302
[12] Yan F L, Gao T and Chitambar E 2011 Phys. Rev. A 83 022319
[13] Gühne O and Tóth G 2009 Phys. Rep. 474 1
[14] Gross C, Zibold T, Nicklas E, Estéve J and Oberthaler M K 2010 Nature 464 1165
[15] Huber M and Sengupta R 2014 Phys. Rev. Lett. 113 100501
[16] Gao T and Hong Y 2010 Phys. Rev. A 82 062113
[17] Gühne O and Seevinck M 2010 New J. Phys. 12 053002
[18] Guo Q Q, Chen X Y and Wang Y Y 2014 Chin. Phys. B 23 050309
[19] Gabriel A, Hiesmayr B C and Huber M 2010 Quantum Inf. Comput. 10 829
[20] Gao T, Yan F L, and van Enk S J 2014 Phys. Rev. Lett. 112 180501
[21] Gao T, Hong Y, Lu Y and Yan F L 2013 Europhys. Lett. 104 20007
[22] Hong Y and Luo S 2016 Phys. Rev. A 93 042310
[23] Schwinger J 1960 Pro. Nat. Acad. Sci. USA 46 570
[24] Giovannini D, Romero J, Leach J, Dudley A, Forbes A and Padgtett M J 2013 Phys. Rev. Lett. 110 143601
[25] Kalev A and Gour G 2014 New J. Phys. 16 053038
[26] Wootters W K and Fields B D 1989 Ann. Phys. 191 363
[27] Beneduci R, Bullock T J, Busch P, Carmeli C, Heinosaari T and Toigo A 2013 Phys. Rev. A 88 032312
[28] Adamson R B A and Steinberg A M 2010 Phys. Rev. Lett. 105 030406
[29] Fernández-Pérez A, Klimov A B and Saavedra C 2011 Phys. Rev. A 83 052332
[30] Renes J M, Blume-Kohout R, Scoot A J and Caves C M 2004 J. Math. Phys. 45 2171
[31] Rastegin A E 2013 Eur. Phys. J. D 67 269
[32] Gour G and Kalev A 2014 J. Phys. A:Math. Theor. 47 335302
[33] Spengler C, Huber M, Brierley S, Adaktylos T and Hiesmayr B C 2012 Phys. Rev. A 86 022311
[34] Chen B, Ma T and Fei S M 2014 Phys. Rev. A 89 064302
[35] Rastegin A E 2015 Open Sys. Inf. Dyn. 22 1550005
[36] Liu L, Gao T and Yan F L 2015 Sci. Rep. 5 13138
[37] Chen B, Li T and Fei S M 2015 Quantum Inf. Proces. 14 2281
[38] Shen S Q, Li M and Duan X F 2015 Phys. Rev. A 91 012326
[39] Cai J M, Zhou Z W, Zhou X X and Guo G C 2006 Phys. Rev. A 74 042338
[40] Zhang C J, Zhang Y S, Zhang S and Guo G C 2008 Phys. Rev. A 77 060301
[41] Wu S, Yu S and Molmer K 2009 Phys. Rev. A 79 022104
[42] Rastegin A E 2014 Phys. Scr. 89 085101
[43] Kaszlikowski D, Gnaciński P, Żukowski M, Miklaszewski W and Zeilinger A 2000 Phys. Rev. Lett. 85 4418
[44] Collins D, Gisin N, Linden N, Massar S and Popescu S 2002 Phys. Rev. Lett. 88 040404
[45] Son W, Lee J and Kim M S 2006 Phys. Rev. Lett. 96 060406
[46] Cerf N J, Bourennane M, Karlsson A and Gisin N 2002 Phys. Rev. Lett. 88 127902
[47] Ralph T C, Resch K J and Gilchris A 2007 Phys. Rev. A 75 022313
[48] Moreva E V, Maslennikov G A, Straupe S S and Kulik S P 2006 Phys. Rev. Lett. 97 023602
[1] Separability criteria based on Heisenberg-Weyl representation of density matrices
Jingmei Chang(常景美), Meiyu Cui(崔美钰), Tinggui Zhang(张廷桂), Shao-Ming Fei(费少明). Chin. Phys. B, 2018, 27(3): 030302.
No Suggested Reading articles found!