Please wait a minute...
Chin. Phys. B, 2014, Vol. 23(5): 058901    DOI: 10.1088/1674-1056/23/5/058901
INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY Prev   Next  

A conditioned level-set method with block-division strategy to flame front extraction based on OH-PLIF measurements

Han Yue (韩乐)a, Cai Guo-Biao (蔡国飙)a, Xu Xu (徐旭)a, Renou Brunob, Boukhalfa Abdelkrimb
a School of Astronautics, Beijing University of Aeronautics and Astronautics, Beijing 100191, China;
b UMR 6614 CORIA, INSA de Rouen, Avenue de l'Université, BP 08, 76801 Saint-Etienne du Rouvray, France
Abstract  A novel approach to extract flame fronts, which is called the conditioned level-set method with block division (CLSB), has been developed. Based on a two-phase level-set formulation, the conditioned initialization and region-lock optimization appear to be beneficial to improve the efficiency and accuracy of the flame contour identification. The original block-division strategy enables the approach to be unsupervised by calculating local self-adaptive threshold values autonomously before binarization. The CLSB approach has been applied to deal with a large set of experimental data involving swirl-stabilized premixed combustion in diluted regimes operating at atmospheric pressures. The OH-PLIF measurements have been carried out in this framework. The resulting images are, thus, featured by lower signal-to-noise ratios (SNRs) than the ideal image; relatively complex flame structures lead to significant non-uniformity in the OH signal intensity; and, the magnitude of the maximum OH gradient observed along the flame front can also vary depending on flow or local stoichiometry. Compared with other conventional edge detection operators, the CLSB method demonstrates a good ability to deal with the OH-PLIF images at low SNR and with the presence of a multiple scales of both OH intensity and OH gradient. The robustness to noise sensitivity and intensity inhomogeneity has been evaluated throughout a range of experimental images of diluted flames, as well as against a circle test as Ground Truth (GT).
Keywords:  OH-PLIF      flame front extraction      level-set      optical signal processing  
Received:  30 November 2013      Revised:  25 January 2014      Accepted manuscript online: 
PACS:  89.20.-a (Interdisciplinary applications of physics)  
  89.20.Ff (Computer science and technology)  
  42.62.-b (Laser applications)  
  42.62.Eh (Metrological applications; optical frequency synthesizers for precision spectroscopy)  
Corresponding Authors:  Han Yue     E-mail:  hanyue@sa.buaa.edu.cn
About author:  89.20.-a; 89.20.Ff; 42.62.-b; 42.62.Eh

Cite this article: 

Han Yue (韩乐), Cai Guo-Biao (蔡国飙), Xu Xu (徐旭), Renou Bruno, Boukhalfa Abdelkrim A conditioned level-set method with block-division strategy to flame front extraction based on OH-PLIF measurements 2014 Chin. Phys. B 23 058901

[1] Chen D, Liu W Q, Zhang Y J, Liu J G, Wei Q N, Kan R F, Wang M, Cui Y B and Chen J Y 2006 Chin. Phys. Lett. 23 2446
[2] Xu Z Y, Liu W Q, Liu J G, He J F, Yao L, Ruan J, Chen J Y, Li H, Yuan S, Geng H and Kan R F 2012 Acta Phys. Sin. 61 234204 (in Chinese)
[3] Wolfrum J 1998 Proc. Combust. Inst. 27 1
[4] Kohse-Hoinghaus K, Barlow R S, Alden M and Wolfrum J 2005 Proc. Combust. Inst. 30 89
[5] Eckbreth A C 1996 Laser Diagnostics for Combustion Temperature and Species (2nd Edn.) (UK: Gordon and Breach)
[6] Kohse-Hoinghaus K and Jeffries J B 2002 Applied Combustion Diagnostics (New York: Taylor and Francis)
[7] Kohse-Hoinghaus K 1994 Prog. Energy Combust. Sci. 20 203
[8] Daily J W 1997 Prog. Energy Combust. Sci. 23 133.
[9] Pfadler S, Beyrau F and Leipertz A 2007 Opt. Express 15 15444
[10] Hartung G, Hult J, Kaminksi C F, Rogerson J W and Swaminathan N 2008 Phys. Fluids 20 035110
[11] Hassel EP and Linow S 2000 Meas. Sci. Technol. 11 R37
[12] Ayoola B O, Balachandran R, Frank J H, Mastorakos E and Kaminski C F 2006 Combust. Flame 144 1
[13] Barlow R S, Wang G H, Anselmo-Filho P, Sweeney M S and Hochgreb S 2009 Proc. Combust. Inst. 32 945
[14] Veynante D, Piana J, Duclos J M and Martel C 1996 Proc. Combust. Inst. 26 413
[15] Gashi S, Hult J, Jenkins K W, Chakraborty N, Cant S and Kaminski C F 2005 Proc. Combust. Inst. 30 809
[16] Prewitt J M S and Mendelsolhn M L 1966 Ann. Acad. Sci. 128 1035
[17] Weszka J S, Nagel R N and Rosenfeld A 1974 IEEE Trans. Comput. C-23 1322
[18] Watanabe S and CYBEST Group 1974 Comp. Graph. Image Process. 3 350
[19] Otsu N 1979 IEEE Trans. Syst. Man. Cybern. 9 62
[20] Bechtel J H and Teets R E 1979 Appl. Opt. 18 4138
[21] Drake M C, Pitz R W, Lapp M, Fenimore C P, Lucht R P, Sweeney D W and Laurendeau N M 1984 Proc. Combust. Inst. 20 327
[22] Roberts L G 1965 Optical and Electro-Optical Information Processing (Cambridge: MIT Press) p. 159
[23] Prewitt J M S 1970 Picture Processing and Psychopictorics (Waltham: Academic Press) p. 75
[24] Sobel I 1970 Camera Models and Machine Perception (Ph.D. dissertation) (Stanford: Stanford University)
[25] Canny J F 1986 IEEE Trans. Pattern Anal. Mach. Intell. 8 679
[26] Sweeney M S, Hochgreb S, Dunn M J and Barlow R S 2011 Proc. Combust. Inst. 33 1419
[27] Boxx I, Stohr M, Carter C and Meier W 2010 Combust. Flame 157 1510
[28] Bayley A E, Hardalupas Y and Taylor A M P K 2012 Exp. Fluids 52 963
[29] Sweeney M and Hochgreb S 2009 Appl. Opt. 48 3866
[30] Yitzhaky Y and Peli E 2003 IEEE Trans. Pattern Anal. Mach. Intell. 25 1027
[31] Perona P and Malik J 1990 IEEE Trans. Pattern Anal. Mach. Intell. 12 629
[32] Malm H and Sparr G 2000 J. Opt. Soc. Am. A 17 2148
[33] Caselles V, Catte F, Coll T and Dibos F 1993 Num. Math. 66 1
[34] Malladi R, Sethian J A and Vemuri B C 1995 IEEE Trans. Pattern Anal. Mach. Intell. 17 158
[35] Chan T and Vese L 2001 IEEE Trans. Image Process. 10 266
[36] Li C, Huang R, Ding Z, Gatenby J C, Metaxas D N and Gore J C 2008 Proc. Med. Image Comput. 5242 1083
[37] Li C, Xu C, Gui C and Fox M D 2010 IEEE Trans. Image Process. 19 3243
[38] Li C, Huang R, Ding Z, Gatenby J C, Metaxas D N and Gore J C 2011 IEEE Trans. Image Process. 20 2007
[39] Peli T and Malah D 1982 Comput. Graph. Image Process. 20 1
[40] Heath M, Sarkar S, Sanocki T and Bowyer K 1998 Comput. Vision Image Understand. 69 38
[41] Venkatesh S and Kitchen L J 1992 CVGIP: Graph. Models Image Process. 54 23
[42] Hoover A, Jean-Baptiste G, Jiang X, Flynn P J, Bunke H, Goldof D and Bowyer K 1996 IEEE Trans. Pattern Anal. Mach. Intell. 18 673
[43] Zhang Y J 1996 Pattern Recogn. 29 1335
[44] Román R, Gómez-Lopera J F, Atae-Allah C, Martínez-Aroza J and Luque-Escamilla P L 2001 Pattern Recogn 34 969
[1] Optical time-domain differentiation based on intensive differential group delay
Li Zheng-Yong(李政勇), Yu Xiang-Zhi(余向志), and Wu Chong-Qing(吴重庆) . Chin. Phys. B, 2011, 20(10): 104208.
No Suggested Reading articles found!