Gao Zi-Ye (高子叶)a, Zhu Jiang-Feng (朱江峰)a, Tian Wen-Long (田文龙)a, Wang Jun-Li (王军利)a, Wang Qing (王庆)b, Zhang Zhi-Guo (张治国)b, Wei Zhi-Yi (魏志义)b, Yu Hao-Hai (于浩海)c, Zhang Huai-Jin (张怀金)c, Wang Ji-Yang (王继扬)c
a School of Physics and Optoelectronic Engineering, Xidian University, Xi'an 710071, China;
b Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China;
c State Key Laboratory of Crystal Material and Institute for Crystal Material, Shandong University, Jinan 250100, China
Abstract A self-starting mode-locked femtosecond laser is accomplished with an oxoborate self-frequency doubling crystal Yb:YCa4O(BO3)3 (Yb:YCOB) as the gain medium and a semiconductor mirror as the saturable absorber. Pumped by a 976-nm fiber-coupled diode laser with 50-u m core diameter, stable mode-locked laser pulses up to 430 mW were obtained at a repetition rate of 83.61 MHz under 5-W pump power. The autocorrelation measurement shows that the pulse duration is as short as 150 fs by assuming the sech2 pulse shape at a central wavelength of 1048 nm. This work has demonstrated a compact and reliable femtosecond laser source for prospective low-cost applications.
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 61205130), the National Key Scientific Instruments Development Program of China (Grant No. 2012YQ120047), and the Fundamental Research Funds for the Central Universities of Ministry of Education of China (Grant No. K5051305008).
Yang J M, Yang Q, Liu J, Wang Y G and Yuen H T 2013 Chin. Phys. B 22 094210
[2]
Qu Z S, Wang Y G, Liu J, Zheng L H, Su L B and Xu J 2012 Chin. Phys. B 21 064211
[3]
Xia P K, Yu H J, Yan P and Gong M L 2010 Chin. Phys. B 19 044205
[4]
Zhou B B, Wei Z Y, Li D H, Teng H and Bourdet G L 2009 Appl. Opt. 48 5978
[5]
Uemura S and Torizuka K 2011 Jpn. J. Appl. Phys. 50 010201
[6]
Zhang Y D, Wei Z Y, Zhou B B, Xu C W, Zou Y W, Li D H, Zhang Z G, Wang J Y, Yu H H, Wu K, Yao B and Wang J L 2009 Opt. Lett. 34 3316
[7]
Lagatsky A A, Sarmani A R, Brown C T A, Sibbett W, Kisel V E, Selivanov A G, Denisov I A, Troshin A E, Yumashev K V, Kuleshov N V, Matrosov V N, Matrosova T A and Kupchenko M I 2005 Opt. Lett. 30 3234
[8]
Zhou B B, Wei Z Y, Zhang Y D, Zhong X, Teng H, Zheng L H, Su L B and Xu J 2009 Opt. Lett. 34 31
[9]
Zhu J F, Tian W L, Wang J L, Wang Z H, Wei Z Y, Zheng L H, Su L B and Xu J 2012 Opt. Lett. 37 5190
[10]
Brunner F, Südmeyer T, Innerhofer E, Morier-Genoud F, Paschotta R, Kisel V E, Scherbitsky V G, Kuleshov N V, Gao J, Contag K, Giesen A and Keller U 2002 Opt. Lett. 27 1162
[11]
Brunner F, Spühler G J, Aus der A J, Krainer L, Morier-Genoud F, Paschotta R, Lichtenstein N, Weiss S, Harder C, Lagatsky A A, Abdolvand A, Kuleshov N V and Keller U 2000 Opt. Lett. 25 1119
[12]
Coluccelli N, Galzerano G, Bonelli L, Di Lieto A, Tonelli M and Laporta P 2008 Opt. Express 16 2922
[13]
Klopp P, Petrov V, Griebner U, Petermann K, Peters V and Erbert G 2004 Opt. Lett. 29 391
[14]
Druon F, Balembois F and Georges P 2004 Opt. Express 12 5005
[15]
Druon F, Balembois F, Georges P, Brun A, Courjaud A, Hönninger C, Salin F, Aron A, Mougel F, Aka G and Vivien D 2000 Opt. Lett. 25 423
[16]
Druon F, Chénais S, Raybaut P, Balembois F, Georges P, Gaumé R, Aka G, Viana B, Mohr S and Kopf D 2002 Opt. Lett. 27 197
[17]
Haumesser P H, Gaume R, Viana B and Vivien D 2002 J. Opt. Soc. Am. B 19 2365
[18]
Zhu Z, Li J, Alain B, Jia G, You Z, Lu X. Wu B and Tu C 2006 Appl. Phys. B 86 71
[19]
Zhu Z, Li J, Alain B, Jia G, You Z, Lu X, Wu B and Tu C 2006 Appl. Phys. B 86 181
[20]
Heckl O H, Kränkel C, Baer C R E, Saraceno C J, Südmeyer T, Petermann K, Huber G and Keller U 2010 Opt. Express 18 19201
[21]
Kränkel C, Peters R, Petermann K, Loiseau P, Aka G and Huber G 2009 J. Opt. Soc. Am. B 26 1310
[22]
Liu J, Han W, Zhang H, Wang J and Petrov V 2008 Appl. Phys. B 91 329
[23]
Valentine G J, Kemp A J, Birkin D J L, Burns D, Balembois F, Georges P, Bernas H, Aron A, Aka G, Sibbett W, Brun A, Dawson M D and Bente E 2000 Electron. Lett. 36 1621
[24]
Yoshida A, Schmidt A, Zhang H J, Wang J Y, Liu J H, Fiebig C, Paschke K, Erbert G, Petrov V and Griebner U 2010 Opt. Express 18 24325
[25]
Yoshida A, Schmidt A, Petrov V, Fiebig C, Erbert G, Liu J H, Zhang H J, Wang J Y and Griebner U 2011 Opt. Lett. 36 4425
33 W quasi-continuous-wave narrow-band sodium D2a laser by sum-frequency generation in LBO Wang Peng-Yuan (王鹏远), Xie Shi-Yong (谢仕永), Bo Yong (薄勇), Wang Bao-Shan (王保山), Zuo Jun-Wei (左军卫), Wang Zhi-Chao (王志超), Shen Yu (申玉), Zhang Feng-Feng (张丰丰), Wei Kai (魏凯), Jin Kai (晋凯), Xu Yi-Ting (徐一汀), Xu Jia-Lin (许家林), Peng Qin-Jun (彭钦军), Zhang Jing-Yuan (张景园), Lei Wen-Qiang (雷文强), Cui Da-Fu (崔大复), Zhang Yu-Dong (张雨东), Xu Zu-Yan (许祖彦). Chin. Phys. B, 2014, 23(9): 094208.
No Suggested Reading articles found!
Viewed
Full text
Abstract
Cited
Altmetric
blogs
tweeters
Facebook pages
Wikipedia page
Google+ users
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.