Please wait a minute...
Chin. Phys. B, 2011, Vol. 20(3): 034501    DOI: 10.1088/1674-1056/20/3/034501
CLASSICAL AREAS OF PHENOMENOLOGY Prev   Next  

Geometric formulations and variational integrators of discrete autonomous Birkhoff systems

Liu Shi-Xing(刘世兴)a)b),Liu Chang(刘畅)a),and Guo Yong-Xin(郭永新)b)
a Department of Mechanics, Beijing Institute of Technology, Beijing 100081, China; b College of Physics, Liaoning University, Shenyang 110036, China
Abstract  The variational integrators of autonomous Birkhoff systems are obtained by the discrete variational principle. The geometric structure of the discrete autonomous Birkhoff system is formulated. The discretization of mathematical pendulum shows that the discrete variational method is as effective as symplectic scheme for the autonomous Birkhoff systems.
Keywords:  autonomous Birkhoff syetem      discrete variational principle      variational integrators  
Received:  22 June 2010      Revised:  28 September 2010      Accepted manuscript online: 
PACS:  45.20.Jj (Lagrangian and Hamiltonian mechanics)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 10872084 and 10932002), the Research Program of Higher Education of Liaoning Province, China (Grant No. 2008S098), the Program of Supporting Elitists of Higher Education of Liaoning Province, China (Grant No. 2008RC20), the Program of Constructing Liaoning Provincial Key Laboratory, China (Grant No. 2008403009), the Foundation Research Plan of Liaoning educational Bureau, China (Grant No. L2010147), and the Youth fund of Liaoning University, China (Grant No. 2008LDQN04).

Cite this article: 

Liu Shi-Xing(刘世兴), Liu Chang(刘畅), and Guo Yong-Xin(郭永新) Geometric formulations and variational integrators of discrete autonomous Birkhoff systems 2011 Chin. Phys. B 20 034501

[1] Birkhoff G D 1927 Dynamical Systems (Providence RI: AMS College Publications)
[2] Santilli R M 1978 Foundations of Theoretical Mechanics I: The Inverse Problem in Newtonian Mechanics (New York: Springer)
[3] Santilli R M 1983 Foundations of Theoretical Mechanics II: Birkhoffian Generalization of Hamiltonian Mechanics (New York: Springer)
[4] Bad'hia-Maj'os A, Cari'nena J F and L'opez C 2006 it J. Phys. A bf39 14699
[5] Delia Ionescu 2006 Journal of Geometry and Physics bf56 2545
[6] Mei F X, Shi R C, Zhang Y F and Wu H B 1996 Dynamics of Birkhoff Systems (Beijing: Beijing Institute of Technology Press) (in Chinese)
[7] Chen X W and Mei F X 2000 Mech. Res. Commun. bf27 365
[8] Wu H B and Mei F X 1995 Chin. Sin. Bull. bf40 885
[9] Mei F X and Levesque B 1995 Trans. CSME. bf19 59
[10] Mei F X 1999 Applications of Lie Groups and Lie Algebras to Constrained Mechanical Systems (Beijing: Science Press) (in Chinese)
[11] Guo Y X, Luo S K, Shang M and Mei F X 2001 Rep. Math. Phys. bf47 313
[12] Fu J L and Chen L Q 2004 Phys. Lett. A bf323 95
[13] Luo S K 2002 Chin. Phys. Lett. bf19 449
[14] Zhang H B, Chen L Q, Gu S L and Liu C C 2007 Chin. Phys. bf16 582
[15] Hu C L and Xie J F 2008 Chin. Phys. B bf17 1153
[16] Ding N, Fang J H and Chen X X 2008 Chin. Phys. B bf17 1967
[17] Zhang Y 2008 Chin. Phys. B bf17 4365
[18] Wang P, Fang J H and Wang X M 2009 Chin. Phys. B bf18 1312
[19] Ding G T 2010 Acta. Phys. Sin. bf59 3643 (in Chinese)
[20] Su H L and Qin M Z 2003 arXiv: Math-ph/0301001, v1 3 Jan.
[21] Zhang X W, Wu J K, Zhu H P and Huang K F 2002 Applied Mathematics and Mechanics bf23 1029
[22] Marsden J E and West M 2001 Acta. Numerica. 357
[23] Hairer E, Lubich C and Wanner G 2002 Geometric Numerical Integration: Structure-Preserving Algorithms for Ordinary Differential Equations vol 31, (Berlin: Springer)
[24] Cortes J 2002 Geometric, Control and Numerical Aspects of Nonholonomic Systems (Berlin: Springer)
[1] Multi-symplectic variational integrators for nonlinear Schrödinger equations with variable coefficients
Cui-Cui Liao(廖翠萃), Jin-Chao Cui(崔金超), Jiu-Zhen Liang(梁久祯), Xiao-Hua Ding(丁效华). Chin. Phys. B, 2016, 25(1): 010205.
[2] Symmetries and variational calculationof discrete Hamiltonian systems
Xia Li-Li (夏丽莉), Chen Li-Qun (陈立群), Fu Jing-Li (傅景礼), Wu Jing-He (吴旌贺). Chin. Phys. B, 2014, 23(7): 070201.
No Suggested Reading articles found!