Please wait a minute...
Chin. Phys. B, 2010, Vol. 19(6): 064201    DOI: 10.1088/1674-1056/19/6/064201
CLASSICAL AREAS OF PHENOMENOLOGY Prev   Next  

Nonparaxial propagation of a super-Lorentz-Gauss SLG01 mode beam

Zhou Guo-Quan(周国泉)
School of Sciences, Zhejiang Forestry University, Lin'an 311300, Zhejiang Province, China
Abstract  Based on the vectorial Rayleigh--Sommerfeld integral formulae, this paper derives the analytical nonparaxial propagation equation of a super-Lorentz--Gauss (SLG) SLG01 mode beam in free space. The far field expression and the scalar paraxial result are treated with special cases of the general formulae. According to the obtained analytical representation, the nonparaxial propagation properties of the SLG01 mode beam are illustrated and analysed with numerical examples. This research provides an approach to investigate the propagation of the SLG01 mode beam within the framework of the nonparaxial regime.
Keywords:  vectorial Rayleigh--Sommerfeld integral      super-Lorentzian--Gauss beam      nonparaxial propagation  
Received:  22 September 2009      Accepted manuscript online: 
PACS:  42.60.Jf (Beam characteristics: profile, intensity, and power; spatial pattern formation)  
  02.60.Nm (Integral and integrodifferential equations)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No.~10974179) and the Natural Science Foundation of Zhejiang Province of China (Grant No.~Y1090073).

Cite this article: 

Zhou Guo-Quan(周国泉) Nonparaxial propagation of a super-Lorentz-Gauss SLG01 mode beam 2010 Chin. Phys. B 19 064201

[1] Naqwi A and Durst F 1990 Appl. Opt. 29 1780
[2] Gawhary O E and Severini S 2006 J. Opt. A : Pure Appl. Opt . 8 409
[3] Dumke W P 1975 J. Quantum Electron. 11 400
[4] Zhou G Q 2008 Appl. Phys. B 93 891
[5] Zhou G Q 2009 Chin. J. Lasers 36 2326 (in Chinese)
[6] Zhou G Q 2009 Chin. Phys. B 18 1853
[7] Zhou G Q 2008 J. Opt. Soc. Am. A 25 2594
[8] Zhou G Q 2009 Chin. Phys. B 18 2779
[9] Gawhary O E and Severini S 2007 Opt. Commun. 269 274
[10] Zhou G Q 2008 Acta Phys. Sin. 57 3494 (in Chinese)
[11] Zhou G Q 2009 Appl. Phys. B 96 149
[12] Zhou G Q 2009 The high-order Lorentz--Gauss beams: super-Lorentzian-Gauss mode beams (submitted to Opt. Lett. )
[13] Agrawal G P and Pattanayak D N 1979 J. Opt. Soc. Am . 69 575
[14] Wü nsche A 1992 J. Opt. Soc. Am. A 9 765
[15] Zeng X, Liang C and An Y 1999 Appl. Opt. 38 6253
[16] Seshadri S R S 2003 Opt. Lett. 28 595
[17] Luneberg P K 1966 Mathematical Theory of Optics (Berkeley: University of California Press)
[18] Mei Z R and Zhao D M 2007 Opt. Express 15 11942
[19] Ciattoni A, Crosignani B and Porto P D 2002 Opt. Commun. 202 17
[20] Mei Z R and Zhao D M 2008 J. Opt. Soc. Am. A 25 537
[21] Gradshteyn I S and Ryzhik I M 1980 Table of Integrals, Series, and Products (New York: Academic Press)
[22] Chen C G, Konkola P T, Ferrera J, Heilmann R K and Schattenburg M L 2002 J. Opt. Soc. Am. A 19 404
[23] Nemoto S 1990 Appl. Opt. 29 1940
[24] Martìnez-Herrero R, Mejìas P M and Bosch S 2008 Opt. Commun. 281 3046
[1] Nonparaxial propagation of radially polarized chirped Airy beams in uniaxial crystal orthogonal to the optical axis
Yaohui Chen(陈耀辉), Lixun Wu(吴理汛), Zhixiong Mo(莫智雄), Lican Wu(吴利灿), and Dongmei Deng(邓冬梅). Chin. Phys. B, 2021, 30(1): 014204.
[2] Nonparaxial propagation properties of the chirped Airy Gaussian vortex beams in uniaxial crystals orthogonal to the optical axis
Yizuo Chen(陈奕佐), Guanwen Zhao(赵官文), Feng Ye(叶峰), Chuangjie Xu(许创杰), Dongmei Deng(邓冬梅). Chin. Phys. B, 2018, 27(10): 104201.
[3] Nonparaxial propagation of Hermite-Laguerre-Gaussian beams in uniaxial crystal orthogonal to the optical axis
Xu Yi-Qing (徐一清), Zhou Guo-Quan (周国泉), Wang Xiao-Gang (汪小刚). Chin. Phys. B, 2013, 22(6): 064101.
[4] Nonparaxial propagation of a vectorial apertured off-axis Lorentz beam
Zhou Guo-Quan(周国泉). Chin. Phys. B, 2009, 18(5): 1853-1890.
[5] Nonparaxial propagation of phase-flipped Gaussian beams
Gao Zeng-Hui(高曾辉) and Lü Bai-Da(吕百达) . Chin. Phys. B, 2008, 17(3): 943-949.
[6] Vectorial Hermite--Laguerre--Gaussian beams beyond the paraxial approximation
Wang Bei-Zhan(王备战), Zhao Zhi-Guo(赵志国), Lü Bai-Da(吕百达), and Duan Kai-Liang(段开椋). Chin. Phys. B, 2007, 16(1): 143-147.
No Suggested Reading articles found!