Please wait a minute...
Chin. Phys. B, 2009, Vol. 18(4): 1700-1706    DOI: 10.1088/1674-1056/18/4/070
CROSS DISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY Prev   Next  

Evolution analysis of the states of the EZ model

Chen Qing-Hua(陈清华)a), Ding Yi-Ming(丁义明)b), and Dong Hong-Guang(董洪光)c)
a Department of Systems Science, School of Management, Beijing Normal University, Beijing 100875, China; b Wuhan Institute of Physics and Mathematics, The Chinese Academy of Sciences, P.O. Box 71010, Wuhan 430071, China; c Beijing Higher Education Press, Chaoyang District, Beijing 100029, China
Abstract  Based on suitable choice of states, this paper studies the stability of the equilibrium state of the EZ model by regarding the evolution of the EZ model as a Markov chain and by showing that the Markov chain is ergodic. The Markov analysis is applied to the EZ model with small number of agents, the exact equilibrium state for N = 5 and numerical results for N=18 are obtained.
Keywords:  EZ model      Markov chain      stationary distribution      equilibrium state  
Received:  12 June 2008      Revised:  07 July 2008      Accepted manuscript online: 
PACS:  02.50.Ga (Markov processes)  
  05.40.-a (Fluctuation phenomena, random processes, noise, and Brownian motion)  
  05.10.Gg (Stochastic analysis methods)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos 60534080, 60774085, and 70771012).

Cite this article: 

Chen Qing-Hua(陈清华), Ding Yi-Ming(丁义明), and Dong Hong-Guang(董洪光) Evolution analysis of the states of the EZ model 2009 Chin. Phys. B 18 1700

[1] Ergodic stationary distribution of a stochastic rumor propagation model with general incidence function
Yuhuai Zhang(张宇槐) and Jianjun Zhu(朱建军). Chin. Phys. B, 2022, 31(6): 060202.
[2] Pitman-Yor process mixture model for community structure exploration considering latent interaction patterns
Jing Wang(王晶) and Kan Li(李侃). Chin. Phys. B, 2021, 30(12): 120518.
[3] Degree distribution of random birth-and-death network with network size decline
Xiao-Jun Zhang(张晓军), Hui-Lan Yang(杨会兰). Chin. Phys. B, 2016, 25(6): 060202.
[4] Bayesian-MCMC-based parameter estimation of stealth aircraft RCS models
Xia Wei (夏威), Dai Xiao-Xia (代小霞), Feng Yuan (冯圆). Chin. Phys. B, 2015, 24(12): 129501.
[5] Estimation of lower refractivity uncertainty from radar sea clutter using Bayesian-MCMC method
Sheng Zheng (盛峥). Chin. Phys. B, 2013, 22(2): 029302.
[6] Consensus protocol for heterogeneous multi-agent systems: A Markov chain approach
Zhu Shan-Ying (朱善迎), Chen Cai-Lian (陈彩莲), Guan Xin-Ping (关新平). Chin. Phys. B, 2013, 22(1): 018901.
[7] Thermal quantum discord in Heisenberg models with Dzyaloshinski–Moriya interaction
Wang Lin-Cheng(王林成), Yan Jun-Yan(闫俊彦), and Yi Xue-Xi(衣学喜) . Chin. Phys. B, 2011, 20(4): 040305.
[8] Stability for manifolds of equilibrium states of generalized Birkhoff system
Li Yan-Min(李彦敏) and Mei Feng-Xiang(梅凤翔). Chin. Phys. B, 2010, 19(8): 080302.
[9] Steady state speed distribution analysis for a combined cellular automaton traffic model
Wang Jun-Feng(王俊峰), Chen Gui-Sheng(陈桂生), and Liu Jin(刘进). Chin. Phys. B, 2008, 17(8): 2850-2858.
[10] Space-charge limiting currents for magnetically focused intense relativistic electron beams
Li Jian-Qing(李建清) and Mo Yuan-Long(莫元龙). Chin. Phys. B, 2007, 16(9): 2716-2720.
[11] Stability for the equilibrium state manifold of relativistic Birkhoffian systems
Fu Jing-Li (傅景礼), Chen Li-Qun (陈立群), Luo Yi (骆毅), Luo Shao-Kai (罗绍凯). Chin. Phys. B, 2003, 12(4): 351-356.
No Suggested Reading articles found!