|
Doping effect on the structure and physical properties of quasi-one-dimensional compounds Ba9Co3(Se1-xSx)15 (x = 0-0.2)
Lei Duan(段磊), Xian-Cheng Wang(望贤成), Jun Zhang(张俊), Jian-Fa Zhao(赵建发), Wen-Min Li(李文敏), Li-Peng Cao(曹立朋), Zhi-Wei Zhao(赵志伟), Changjiang Xiao(肖长江), Ying Ren(任瑛), Shun Wang(王顺), Jinlong Zhu(朱金龙), and Chang-Qing Jin(靳常青)
2021 (10):
106101-106101.
doi: 10.1088/1674-1056/ac1f03
A series of samples of Ba9Co3(Se1-xSx)15 (x = 0, 0.05, 0.1, 0.15, 0.2) with quasi-one-dimensional (1D) structure were successfully synthesized under high-temperature and high-pressure conditions. The influence of partial substitution of S for Se on the structure, electronic transport, and magnetic properties of Ba9Co3(Se1-xSx)15 has been investigated in detail. The x-ray diffraction data shows that the lattice constant decreases linearly with increasing S-doping level, which follows the Vegrad's law. The doped S atoms preferentially occupy the site of Se atoms in CoSe6 octahedron. Physical properties measurements indicate that all the samples of Ba9Co3(Se1-xSx)15 are semiconducting and display spin glass behavior. As the replacement of Se by smaller size S, although the inter-chain distance decreases, the electronic hopping between CoSe/S6 chains is weakened and leads to an increase of band gap from 0.75 eV to 0.86 eV, since the S-3p electrons are more localized than Se-4p ones. Ba9Co3(Se1-xSx)15 exhibits 1D conducting chain characteristic.
参考文献 |
补充材料 |
相关文章 |
计量指标
|