[1] Bender C M and Boettcher S 1998 Phys. Rev. Lett. 80 5243 [2] Gong J and Wang Q H 2013 J. Phys. A: Math. Theor. 46 485302 [3] Zhang D J, Wang Q H and Gong J 2019 Phys. Rev. A 100 062121 [4] Gong J and Wang Q H 2010 Phys. Rev. A 82 012103 [5] Fring A and Moussa M H Y 2016 Phys. Rev. A 94 042128 [6] Fring A and Moussa M H Y 2016 Phys. Rev. A 93 042114 [7] Maamache M, Djeghiour O K, Mana N and Koussa W 2017 Eur. Phys. J. Plus 132 383 [8] Mead L R and Garfinkle D 2017 AIP Adv. 7 085001 [9] Mostafazadeh A 2017 Phys. Rev. D 98 046022 [10] Zhang D J, Wang Q H and Gong J 2019 Phys. Rev. A 99 042104 [11] Deffner S and Saxena A 2015 Phys. Rev. Lett. 114 150601 [12] Gardas B, Deffner S and Saxena A 2016 Sci. Rep. 6 23408 [13] Zeng M and Yong E H 2017 J. Phys. Commun. 1 031001 [14] Wei B B 2018 Phys. Rev. A 97 012105 [15] Wei B B 2018 Phys. Rev. E 97 012114 [16] Berry M V 1984 Proc. R. Soc. Lond. A 392 45 [17] Jin L and Song Z 2009 Phys. Rev. A 80 052107 [18] Zhang X Z, Jin L and Song Z 2012 Phys. Rev. A 85 012106 [19] Zhang X Z and Song Z 2013 Phys. Rev. A 88 042108 [20] Xiao L, Zhan X, Bian Z H, Wang K K, Zhang X, Wang X P, Li J, Mochizuki K, Kim D, Kawakami N, Yi W, Obuse H, Sanders B C and Xue P 2017 Nat. Phys. 13 1117 [21] Ashida Y, Furukawa S and Ueda M 2017 Nat. Commun. 8 15791 [22] Kawabata K, Ashida Y and Ueda M 2017 Phys. Rev. Lett. 119 190401 [23] Weimann S, Kremer M, Plotnik Y, Lumer Y, Nolte S, Makris K, Segev M, Rechtsman M C and Szameit A 2017 Nat. Mater. 16 433 [24] Menke H and Hirschmann M M 2017 Phys. Rev. B 95 174506 [25] Jin L 2018 Phys. Rev. A 98 022117 [26] Jin L 2018 Phys. Rev. A 97 012121 [27] Kawabata K, Ashida Y, Katsura H and Ueda M 2018 Phys. Rev. B 98 085116 [28] Lourenco J A S, Eneias R L and Pereira R G 2018 Phys. Rev. B 98 085126 [29] Shen H, Zhen B and Fu L 2018 Phys. Rev. Lett. 120 146402 [30] Yao S, Song F and Wang Z 2018 Phys. Rev. Lett. 121 136802 [31] Gong Z, Ashida Y, Kawabata K, Takasan K, Higashikawa S and Ueda M 2018 Phys. Rev. X 8 031079 [32] El-Ganainy R, Makris K G, Khajavikhan M, Musslimani Z H, Rotter S and Christodoulides D N 2018 Nat. Phys. 14 11 [33] Wu Y, Liu W, Geng J, Song X, Ye X, Duan C K, Rong X and Du J 2019 Science 364 878 [34] Dong Y, Zhang W J, Liu J and Xie X T 2019 Chin. Phys. B 28 114202 [35] Li L, Lee C H and Gong J 2019 Phys. Rev. B 100 075403 [36] Zhang X Z and Song Z 2019 Phys. Rev. A 99 012113 [37] Liu H, Su Z, Zhang Z Q and Jiang H 2020 Chin. Phys. B 29 050502 [38] Zhou L, Gu Y and Gong J 2021 Phys. Rev. B 103 L041404 [39] Zhu S L and Wang Z D 2003 Phys. Rev. Lett. 91 187902 [40] Garrison J G and Wright E M 1988 Phys. Lett. A 128 177 [41] Dattoli G, Mignani R and Terre A 1990 J. Phys. A: Math. Gen. 23 5795 [42] Aharonov Y and Anandan J 1987 Phys. Rev. Lett. 58 1593 [43] Strictly speaking, as a local coordinate, θ's shoud comprise an open interval of $\mathbb{R}$ or $\mathbb{R}$ itself. This can be achieved by subdividing the local patch into smaller ones and then defining local coordinates respectively on these smaller patches. In this paper, we do not adopt such a cumbersome treatment and simply define θ up to an integer multiple of 2π. [44] Simon B 1983 Phys. Rev. Lett. 51 2167 [45] In mathematical terminology, $|\phi \rangle$ appearing in the expression $\rho=|\phi \rangle\langle{\widetilde{\phi}}|$ can be chosen as a local section. A local section is a continuous mapping of a patch of $\mathcal{R}$ into the fibers above the patch. This amounts to the fact that the local coordinate $\theta$ is a function of $(\lambda^1,\ldots,\lambda^{m+n})$, i.e., $\theta=\theta(\lambda^1,\ldots,\lambda^{m+n})$. So, a local section $|\phi \rangle$ can be expressed as $|\phi \rangle=|{\phi(\lambda^1,\ldots,\lambda^{m+n})}\rangle$. [46] Provost J P and Vallee G 1980 Commun. Math. Phys. 76 289 [47] Blanes S, Casas F, Oteo J A and Ros J 2009 Phys. Rep. 470 151 [48] Gong J and Wang Q H 2018 Phys. Rev. A 97 052126 [49] Samuel J and Bhandari R 1988 Phys. Rev. Lett. 60 2339 [50] Zhou L, Wang Q H, Wang H and Gong J 2018 Phys. Rev. A 98 022129 |