中国物理B ›› 2018, Vol. 27 ›› Issue (4): 48503-048503.doi: 10.1088/1674-1056/27/4/048503
• INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY • 上一篇 下一篇
Li-Hua Dai(戴丽华), Da-Wei Bi(毕大炜), Zhi-Yuan Hu(胡志远), Xiao-Nian Liu(刘小年), Meng-Ying Zhang(张梦映), Zheng-Xuan Zhang(张正选), Shi-Chang Zou(邹世昌)
Li-Hua Dai(戴丽华)1,2, Da-Wei Bi(毕大炜)2, Zhi-Yuan Hu(胡志远)2, Xiao-Nian Liu(刘小年)1,2, Meng-Ying Zhang(张梦映)1,2, Zheng-Xuan Zhang(张正选)2, Shi-Chang Zou(邹世昌)2
摘要:
Silicon-on-insulator (SOI) devices are sensitive to the total ionizing dose effect due to the existence of buried oxide. In this paper, an extra single-step Si ion implantation into buried oxide layer prior to the normal complementary metal-oxide-semiconductor transistor (CMOS) process is used to harden the SOI wafer. The top-Si quality of the hardened SOI wafer is confirmed to be good enough for device manufacturing through various characterization methods. The radiation experiments show that the total ionizing dose tolerance of the Si implanted SOI device is improved significantly. The metastable electron traps introduced by Si implantation is also investigated by electrical stress. The results show that these traps are very instable, and electrons will tunnel into or out of the metastable electron traps quickly after hot-electron-injection or hot-hole-injection.
中图分类号: (Field effect devices)