中国物理B ›› 2018, Vol. 27 ›› Issue (2): 28101-028101.doi: 10.1088/1674-1056/27/2/028101
• INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY • 上一篇 下一篇
Yao Xing(邢瑶), De-Gang Zhao(赵德刚), De-Sheng Jiang(江德生), Xiang Li(李翔), Zong-Shun Liu(刘宗顺), Jian-Jun Zhu(朱建军), Ping Chen(陈平), Jing Yang(杨静), Wei Liu(刘炜), Feng Liang(梁锋), Shuang-Tao Liu(刘双韬), Li-Qun Zhang(张立群), Wen-Jie Wang(王文杰), Mo Li(李沫), Yuan-Tao Zhang(张源涛), Guo-Tong Du(杜国同)
Yao Xing(邢瑶)1,2, De-Gang Zhao(赵德刚)1,3, De-Sheng Jiang(江德生)1, Xiang Li(李翔)1, Zong-Shun Liu(刘宗顺)1, Jian-Jun Zhu(朱建军)1, Ping Chen(陈平)1, Jing Yang(杨静)1, Wei Liu(刘炜)1, Feng Liang(梁锋)1, Shuang-Tao Liu(刘双韬)1, Li-Qun Zhang(张立群)4, Wen-Jie Wang(王文杰)5, Mo Li(李沫)5, Yuan-Tao Zhang(张源涛)6, Guo-Tong Du(杜国同)6
摘要: In order to suppress the electron leakage to p-type region of near-ultraviolet GaN/InxGa1-xN/GaN multiple-quantum-well (MQW) laser diode (LD), the Al composition of inserted p-type AlxGa1-xN electron blocking layer (EBL) is optimized in an effective way, but which could only partially enhance the performance of LD. Here, due to the relatively shallow GaN/In0.04Ga0.96N/GaN quantum well, the hole leakage to n-type region is considered in the ultraviolet LD. To reduce the hole leakage, a 10-nm n-type AlxGa1-xN hole blocking layer (HBL) is inserted between n-type waveguide and the first quantum barrier, and the effect of Al composition of AlxGa1-xN HBL on LD performance is studied. Numerical simulations by the LASTIP reveal that when an appropriate Al composition of AlxGa1-xN HBL is chosen, both electron leakage and hole leakage can be reduced dramatically, leading to a lower threshold current and higher output power of LD.
中图分类号: (III-V semiconductors)