Please wait a minute...
Chin. Phys. B, 2020, Vol. 29(2): 020401    DOI: 10.1088/1674-1056/ab6584
GENERAL Prev   Next  

Influence of the Earth's rotation on measurement of gravitational constant G with the time-of-swing method

Jie Luo(罗杰)1, Tao Dong(董涛)1, Cheng-Gang Shao(邵成刚)2, Yu-Jie Tan(谈玉杰)2, Hui-Jie Zhang(张惠捷)1
1 School of Mechanical Engineering and Electronic Information, China University of Geosciences, Wuhan 430074, China;
2 MOE Key Laboratory of Fundamental Physical Quantities Measurement&Hubei Key Laboratory of Gravitation and Quantum Physics, PGMF and School of Physics, Huazhong University of Science and Technology, Wuhan 430074, China
Abstract  In the measurement of the Newtonian gravitational constant G with the time-of-swing method, the influence of the Earth's rotation has been roughly estimated before, which is far beyond the current experimental precision. Here, we present a more complete theoretical modeling and assessment process. To figure out this effect, we use the relativistic Lagrangian expression to derive the motion equations of the torsion pendulum. With the correlation method and typical parameters, we estimate that the influence of the Earth's rotation on G measurement is far less than 1 ppm, which may need to be considered in the future high-accuracy experiments of determining the gravitational constant G.
Keywords:  the Earth's rotation      relativistic Lagrangian      G measurement      time-of-swing method  
Received:  15 November 2019      Revised:  13 December 2019      Accepted manuscript online: 
PACS:  04.80.Cc (Experimental tests of gravitational theories)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11575160 and 11805074) and the Postdoctoral Science Foundation of China (Grant Nos. 2017M620308 and 2018T110750).
Corresponding Authors:  Yu-Jie Tan, Hui-Jie Zhang     E-mail:  yjtan@hust.edu.cn;hj_zhang@cug.edu.cn

Cite this article: 

Jie Luo(罗杰), Tao Dong(董涛), Cheng-Gang Shao(邵成刚), Yu-Jie Tan(谈玉杰), Hui-Jie Zhang(张惠捷) Influence of the Earth's rotation on measurement of gravitational constant G with the time-of-swing method 2020 Chin. Phys. B 29 020401

[1] Gundlach J H, Adelberger E G, Heckel B R and Swanson H E 1996 Phys. Rev. D 54 1256(R)
[2] Luo J, Hu Z K, Fu X H, Fan S H and Tang M X 1998 Phys. Rev. D 59 042001
[3] Baldi P, Campari E G, Casula G, Focardi S, Levi G and Palmonari F 2005 Phys. Rev. D 71 022002
[4] Luo J, Liu Q, Tu L C, Shao C G, Liu L X, Yang S Q, Li Q and Zhang T Y 2009 Phys. Rev. Lett. 102 240801
[5] Liu L X, Guan S G, Liu Q, Zhang Y T, Shao C G and Luo J 2009 Chin. Phys. Lett. 26 090402
[6] Luo J, Shao C G, Wang D H and Tian Y 2012 Chin. Phys. Lett. 29 060401
[7] Liu J P, Wu J F, Li Q, Xue C, Mao D K, Yang S Q, Shao C G, Tu L C, Hu Z K and Luo J 2018 Acta Phys. Sin. 67 160603 (in Chinese)
[8] Tu L C, Li Q, Wang Q L, Shao C G, Yang S Q, Liu L X, Liu Q and Luo J 2010 Phys. Rev. D 82 022001
[9] Li Q, Liu J P, Zhao H H, Yang S Q, Tu L C, Liu Q, Shao C G, Hu Z K, Milyukov V and Luo J 2014 Phil. Trans. R. Soc. A 372 20140141
[10] Li Q 2013 The measurement of gravitational constant G with the time-of-swing method by using a high-Q quartz fiber (Ph.D Dissertation) (WuHan: Huazhong University of Science and Technology) (in Chinese)
[11] Xue C, Quan L D, Yang S Q, Wang B P, Wu J F, Shao C G, Tu L C, Milyukov V and Luo J 2014 Phil. Trans. R. Soc. A 372 20140031
[12] Quan L D, Xue C, Shao C G, Yang S Q, Tu L C, Wang Y J and Luo J 2014 Rev. Sci. Instrum. 85 014501
[13] Li Q, Xue C, Liu J P, Wu J F, et al. 2018 Nature 560 582
[14] Su Y 1992 A new test of the weak equivalence principle (Ph.D Dissertation) (Washington: University of Washington)
[15] Choi K Y 2006 A new equivalence principle test using a rotating torsion balance (Ph.D Dissertation) (Washington: University of Washington)
[16] Tian Y L, Tu Y and Shao C G 2004 Rev. Sci. Instrum. 75 1971
[17] Luo J, Wang D H, Liu Q and Shao C G 2005 Chin. Phys. Lett. 22 2169
[18] Luo J and Wang D H 2008 Rev. Sci. Instrum. 79 094705
[19] Braun C 1897 Nature 56 198
[20] Heyl P R 1930 J. Res. Nat. Bur. Stand. 5 1243
[21] Heyl P R and Chrzanowski P 1942 J. Res. Nat. Bur. Stand. 29 1
[22] Cohen E R and Taylor B N 1987 Rev. Mod. Phys. 59 1121
[23] Luo J 1999 The precise measurement of the Newtonian gravitational constant G (Ph.D Dissertation) (WuHan: Huazhong University of Science and Technology) (in Chinese)
[24] Hu Z K 2001 Measurement of gravitational constant G with torsion pendulum (Ph.D Dissertation) (WuHan: Huazhong University of Science and Technology) (in Chinese)
[1] New measuring method of fiber alignment in precision torsion pendulum experiments
Bing-Jie Wang(王冰洁), Li Xu(徐利), Wei-You Zeng(曾维友), Qing-Lan Wang(王晴岚). Chin. Phys. B, 2020, 29(8): 080401.
[2] Optimal estimation of the amplitude of signal with known frequency in the presence of thermal noise
Jie Luo(罗杰), Jun Ke(柯俊), Yi-Chuan Liu(柳一川), Xiang-Li Zhang(张祥莉), Wei-Ming Yin(殷蔚明), Cheng-Gang Shao(邵成刚). Chin. Phys. B, 2019, 28(10): 100401.
[3] Development of a 170-mm hollow corner cube retroreflector for the future lunar laser ranging
Yun He(何芸), Qi Liu(刘祺), Jing-Jing He(何静静), Ming Li(黎明), Hui-Zong Duan(段会宗), Hsien-Chi Yeh(叶贤基), Jun Luo(罗俊). Chin. Phys. B, 2018, 27(10): 100701.
[4] Correlation method estimation of the modulation signal in the weak equivalence principle test
Jie Luo(罗杰), Liang-Cheng Shen(沈良程), Cheng-Gang Shao(邵成刚), Qi Liu(刘祺), Hui-Jie Zhang(张惠捷). Chin. Phys. B, 2018, 27(8): 080402.
[5] Determination of the thermal noise limit in test of weak equivalence principle with a rotating torsion pendulum
Wen-Ze Zhan(占文泽), Jie Luo(罗杰), Cheng-Gang Shao(邵成刚), Di Zheng(郑第), Wei-Ming Yin(殷蔚明), Dian-Hong Wang(王典洪). Chin. Phys. B, 2017, 26(9): 090401.
[6] Effect of gravity gradient in weak equivalence principle test
Jia-Hao Xu(徐家豪), Cheng-Gang Shao(邵成刚), Jie Luo(罗杰), Qi Liu(刘祺), Lin Zhu(邾琳), Hui-Hui Zhao(赵慧慧). Chin. Phys. B, 2017, 26(8): 080401.
[7] Correction of cosine oscillation to the improved correlation method of estimating the amplitude of gravitational background signal
Wei-Huang Wu(巫伟皇), Yuan Tian(田苑), Chao Xue(薛超), Jie Luo(罗杰), Cheng-Gang Shao(邵成刚). Chin. Phys. B, 2017, 26(4): 040401.
[8] Influence of the colored noise on determining the period of a torsion pendulum
Jie Luo(罗 杰), Wen-Ze Zhan(占文泽), Wei-Huang Wu(巫伟皇), Cheng-Gang Shao(邵成刚), Dian-Hong Wang(王典洪). Chin. Phys. B, 2016, 25(8): 080401.
[9] Influence of the environmental noise on determining the period of a torsion pendulum
Luo Jie (罗杰), Tian Yuan (田苑), Shao Cheng-Gang (邵成刚), Wang Dian-Hong (王典洪). Chin. Phys. B, 2015, 24(3): 030401.
[10] Erratum:Classical interpretations of relativistic precessions
Sankar Hajra. Chin. Phys. B, 2014, 23(9): 090401.
[11] Classical interpretations of relativistic precessions
Sankar Hajra. Chin. Phys. B, 2014, 23(4): 040402.
[12] Post-post-Newtonian deflection of light ray in multiple systems with PPN parameters
Gong Yan-Xiang(宫衍香) and Wu Xiao-Mei(吴晓梅) . Chin. Phys. B, 2011, 20(2): 020403.
No Suggested Reading articles found!