Please wait a minute...
Chin. Phys. B, 2018, Vol. 27(2): 024702    DOI: 10.1088/1674-1056/27/2/024702
Special Issue: TOPICAL REVIEW — Soft matter and biological physics
TOPIC REVIEW—Soft matter and biological physics Prev   Next  

Theoretical studies and molecular dynamics simulations on ion transport properties in nanochannels and nanopores

Ke Xiao(肖克), Dian-Jie Li(李典杰), Chen-Xu Wu(吴晨旭)
Institute of Soft Matter and Biometrics, and Department of Physics, Xiamen University, Xiamen 361005, China
Abstract  

Control of ion transport and fluid flow through nanofluidic devices is of primary importance for energy storage and conversion, drug delivery and a wide range of biological processes. Recent development of nanotechnology, synthesis techniques, purification technologies, and experiment have led to rapid advances in simulation and modeling studies on ion transport properties. In this review, the applications of Poisson-Nernst-Plank (PNP) equations in analyzing transport properties are presented. The molecular dynamics (MD) studies of transport properties of ion and fluidic flow through nanofluidic devices are reported as well.

Keywords:  nanofluidic devices      ion transport      Poisson-Nernst-Plank (PNP) equations      molecular dynamics (MD) simulations  
Received:  11 December 2017      Revised:  12 January 2018      Accepted manuscript online: 
PACS:  47.85.Np (Fluidics)  
  87.15.A- (Theory, modeling, and computer simulation)  
  87.16.Vy (Ion channels)  
  88.30.rh (Carbon nanotubes)  
Fund: 

Project supported by the National Natural Science Foundation of China (Grant Nos. 11374243 and 11574256).

Corresponding Authors:  Chen-Xu Wu     E-mail:  cxwu@xmu.edu.cn
About author:  47.85.Np; 87.15.A-; 87.16.Vy; 88.30.rh

Cite this article: 

Ke Xiao(肖克), Dian-Jie Li(李典杰), Chen-Xu Wu(吴晨旭) Theoretical studies and molecular dynamics simulations on ion transport properties in nanochannels and nanopores 2018 Chin. Phys. B 27 024702

[1] Schoch R B, Han J and Renaud P 2008 Rev. Mod. Phys. 80 839
[2] B Corry 2008 J. Phys. Chem. B 112 1427
[3] Buchsbaum S F, Nguyen G, Howorka S and Siwy Z S 2014 J. Am. Chem. Soc. 136 9902
[4] Siria A, Poncharal P, Biance A L, Fulcrand R, Blase X, Purcell S T and Bocquet L 2013 Nature 494 455
[5] Tu Y S, Xiu P, Wan R Z, Hu J, Zhou R H and Fang H P 2009 Proc. Natl. Acad. Sci. 106 18120
[6] Vlassiouk I, Kozel T R and Siwy Z S 2009 J. Am. Chem. Soc. 494 455
[7] Tian Y, Wen L P, Hou X, Hou G L and Jiang L 2012 ChemPhysChem 13 2445
[8] Bhirde A A, Patel V, Gavard J, Zhang G, Sousa A A, Masedunskas A, Leapman R D, Weigert R, Gutkind J S and Rusling J F 2009 ACS Nano 3 307
[9] Elimelech M and Phillip W A 2011 Science 333 712
[10] Shannon M A, Bohn P W, Elimelech M, Georgiadis J G, Marinas B J and Mayes A M 2008 Nature 452 301
[11] Liu Z, Tabakman S, Welsher K and Dai H 2009 Nano Res. 2 85
[12] Lu F, Gu L, Meziani M J, Wang X, Luo P G, Veca L M, Cao L and Sun Y P 2009 Adv. Mater. 21 139
[13] Yongqiang R and Derek S 2008 Nanotechnology 19 195707
[14] Xue J M, Zou X Q, Xie Y B and Wang Y G 2009 J. Phys. D:Appl. Phys. 42 105308
[15] Xue J M, Guo P and Sheng Q 2015 Chin. Phys. B 24 086601
[16] Samoylova O N, Calixte E I and Shuford K L 2017 Appl. Surf. Phys. 423 154
[17] Zhu L, Xu J, Xiu Y H, Sun Y, Hess D W and Wong C P 2006 J. Phys. Chem. B 110 15945
[18] Ajayan P M 1999 Chem. Rev. 99 1787
[19] Dai H 2002 Acc. Chem. Res. 35 1035
[20] Baughman R H, Zakhidov A A and Heer W A 2002 Science 297 787
[21] De Volder M F L, Tawfick S H, Baughman R H and Hart A J 2013 Science 339 535
[22] Iijima S and Ichihashi T 1993 Nature 363 603
[23] Coleman J N, Khan U, Blau W J and Gunko Y K 2006 Carbon 44 1624
[24] Cheng J and Guo L 2007 Nano Lett. 7 3165
[25] Daiguji H, Oka Y and Shirono K 2005 Nano Lett. 5 2274
[26] Cervera J, Schiedt B, Neumann R and Maf S 2006 J. Chem. Phys. 124 104706
[27] Liu Q, Wang Y G, Guo W, Ji H, Xue J M and Ouyang Q 2007 Phys. Rev. E 75 051201
[28] Wang X W, Xue J M, Wang L, Guo W, Zhang W M, Wang Y G, Liu Q, Ji H and Ouyang Q 2007 J. Phys. D:Appl. Phys. 40 7077
[29] Guo S, Meshot E R, Kuykendall T, Cabrini S and Fornasiero F 2015 Adv. Mater. 27 5726
[30] Zhou Y C, Lu B Z, Huber G A, Holst M J and McCammon J A 2011 J. Phys. Chem. B 112 270
[31] White H S and Bund A 2008 Langmuir 24 2212
[32] Cervera J, Schiedt B and Ramirez P 2005 Europhys. Lett. 71 35
[33] Constantin D and Siwy Z S 2007 Phys. Rev. E 76 041202
[34] Singh K P 2016 Sens. Actuators, B:Chem. 230 493
[35] Matin M H, Salimi S and Yaghoobi A 2016 J. Phys. Chem. C 120 28832
[36] Park J K, Xia K and Wei G W 2015 Microfluid Nanofluid 19 665
[37] Hummer G, Rasaiah J and Noworyta 2001 Nature 414 188
[38] Kalra A, Garde S and Hummer G 2003 Proc. Natl. Acad. Sci. 100 10175
[39] Majumder M, Chopra N, Andrews R and Hinds B 2005 Nature 438 44
[40] Joseph S and Aluru N R 2008 Nano Lett. 8 452
[41] Samoylova O N, Calixte E I and Shuford K L 2015 J. Phys. Chem. C 119 1659
[42] Su J Y and Huang D C 2016 J. Phys. Chem. C 120 11245
[43] Sheng J D, Zhu Q, Zeng X, Yang Z H and Zhang X H 2017 Appl. Mater. Interfaces 9 11009
[44] Amiri H, Shepard K L, Nuckolls C and Hernandez S R 2017 Nano Lett. 17 1204
[45] Whitby M and Quirke N 2007 Nat. Nanotechnol. 2 87
[46] Regan B C, Aloni S, Ritchie R O, Dahmen U and Zettl A 2004 Nature 428 924
[47] Holt J K, Park H G, Wang Y, Stadermann M, Artyukhin A B, Grigoropoulos C P, Noy A and Bakajin O 2006 Science 312 1034
[48] Bourlon B, Wong J, Miko C, Forro L and Bockrath M 2007 Nat. Nanotechnol. 2 104
[49] Ghosh S, Sood A K and Kumar N 2003 Science 299 1042
[50] Besteman K, Lee J O, Wiertz F G M, Heering H A and Dekker C 2003 Nano Lett. 3 727
[51] Das R, Ali M E, Hamid S B A, Ramakrishna S and Chowdhury Z Z 2014 Desalination 336 97
[52] Ye H F, Zhang Z Q, Zheng Y G, Zhang H W, Chen Z and Zong Z 2014 Int. J. Comp. Mater. Sci. Eng. 03 1450018
[53] Ahmed S B, Zhao Y Z, Fang C and Su J Y 2017 Phys. Lett. A 381 3487
[54] He Z J, Zhou J, Lu X H and Corry B 2013 ACS Nano 7 10148
[55] Beu T A 2010 J. Chem. Phys. 132 164513
[56] Beu T A 2011 J. Chem. Phys. 135 044515
[57] Beu T A 2011 J. Chem. Phys. 135 044516
[58] Ma J C and Dougherty D A 1997 Chem. Rev. 97 1303
[59] Liu J, Shi G S, Guo P, Yang J R and Fang H P 2015 Phys. Rev. Lett. 115 164502
[60] Pham T A, Mortuza S M G, Wood B C, Lau E Y, Ogitsu T, Buchsbaum S F, Siwy Z S, Fornasiero F and Schwegler E 2016 J. Chem. Phys. C 120 7332
[61] Liu L and Patey G N 2017 J. Chem. Phys. 146 074502
[62] Abascal J L F and Vega C 2005 J. Chem. Phys. 123 234505
[63] Liu L and Patey G N 2014 J. Chem. Phys. 141 18C518
[64] Liu L and Patey G N 2016 J. Chem. Phys. 144 184502
[1] Wetting and coalescence of the liquid metal on the metal substrate
Zhen-Yang Zhao(赵珍阳), Tao Li(李涛), Yun-Rui Duan(段云瑞), Zhi-Chao Wang(王志超), Hui Li(李辉). Chin. Phys. B, 2017, 26(8): 083104.
[2] Lithium-ion transport in inorganic solid state electrolyte
Jian Gao(高健), Yu-Sheng Zhao(赵予生), Si-Qi Shi(施思齐), Hong Li(李泓). Chin. Phys. B, 2016, 25(1): 018211.
[3] Characteristic parameters of diffusive supersonic radiation transport in low density materials
Jiang Shao-En(江少恩), Yang Jia-Min(杨家敏), Zheng Zhi-Jian(郑志坚), and Ding Yong-Kun(丁永坤). Chin. Phys. B, 2007, 16(1): 193-199.
No Suggested Reading articles found!