Please wait a minute...
Chin. Phys. B, 2010, Vol. 19(10): 103402    DOI: 10.1088/1674-1056/19/10/103402
ATOMIC AND MOLECULAR PHYSICS Prev   Next  

Positron scattering and ionization of neon atoms —— theoretical investigations

Harshit N. Kothari and K. N. Joshipura
Department of Physics, Sardar Patel University, Vallabh Vidyanagar-388120, India
Abstract  Although positron scattering with inert gas atoms has been studied in theory as well as in experiment, there are discrepancies. The present work reports all the major total cross sections of e–neon scattering at incident energies above ionization threshold, originating from a complex potential formalism. Elastic and cumulative inelastic scatterings are treated in the complex spherical e–atom potential. Our total inelastic cross section includes positronium formation together with ionization and excitation channels in Ne. Because of the Ps formation channel it is difficult to separate out ionization cross sections from the total inelastic cross sections. An approximate method similar to electron–atom scattering has been applied to bifurcate ionization and cumulative excitation cross sections at energies from threshold to 2000 eV. Comparisons of present results with available data are made. An important outcome of this work is the relative contribution of different scattering processes, which we have shown by a bar-chart at the ionization peak.
Keywords:  ionization cross sections      positron scattering      complex potential      total cross sections  
Received:  29 December 2009      Revised:  18 March 2010      Accepted manuscript online: 
PACS:  32.80.Fb (Photoionization of atoms and ions)  
  34.80.Uv (Positron scattering)  
Fund: Project supported by ISRO Bangalore–India for a Research Project (Grant No. RES/2/356/08-09), and UGC, New Delhi for Meritorious Research Fellowship through Sardar Patel University, Vallabh Vidyanagar, India.

Cite this article: 

Harshit N. Kothari and K. N. Joshipura Positron scattering and ionization of neon atoms —— theoretical investigations 2010 Chin. Phys. B 19 103402

[1] Marler J P, Sullivan J P and Surko C M 2005 Phys. Rev. A 71 022701
[2] Kauppila W E, Stein T S, Smart J H, Dababneh M S, Ho Y K, Downing J P and Pol V 1981 Phys. Rev. A 24 725
[3] Tsai J S, Lebow L and Paul D A L 1976 Can. J. Phys. 54 1741
[4] Griffith T C, Heyland G R, Lines K R and Twomey T R 1979 Appl. Phys. 19 431
[5] Brenton A G, Dutton J and Harris F M 1978 J. Phys. B 11 L15
[6] Coleman P G, Griffith T C, Heyland G R and Twomey T R 1976 it Appl. Phys. 11 321
[7] Dewangan D P and Walters H R J 1977 J. Phys. B 10 637
[8] Parcell L A, McEachran R P and Stauffer A D 2000 Nucl. Instrum. Methods B 171 113
[9] Campeanu R I, McEachran R P and Stauffer A D 2001 Can. J. Phys. 79 1231
[10] Reid D D and Wadehra J M 1996 J. Phys. B 29 L127
[11] Baluja K L and Jain A 1992 Phys. Rev. A 46 1279
[12] Laricchia G, Reeth P Van, Szluinska M and Moxom J 2002 it J. Phys. B 35 2525
[13] Bluhme H, Knudsen H, Merrison J P and Nielsen K A 1999 J. Phys. B 32 5835
[14] Knudsen H, Brun-Nielsen L, Charlton M and Poulsen M R 1990 J. Phys. B 23 3955
[15] Jacobsen F M, Frandsen N P, Knudsen H, Mikkelsen U and Schrader D M 1995 J. Phys. B 28 4691
[16] Kara V, Paludan K, Moxom J, Ashley P and Laricchia G 1997 J. Phys. B 30 3933
[17] Mori S and Sueoka O 1994 J. Phys. B 27 4349
[18] Joshipura K N, Gangopadhyay S S, Kothari H N and Shelat F A 2009 it Phys. Lett. A 373 2876
[19] Joshipura K N, Vaishnav B G and Gangopadhyay Sumona 2007 it Int. J. Mass Spectrom. 261 146
[20] Joshipura K N, Vinodkumar M, Limbachiya C G and Antony B K 2004 it Phys. Rev. A 69 022705
[21] Bunge C F and Barrientos J A 1993 Atomic Data and Nuclear Data Tables 53 113
[22] Calogero F 1967 Variable Phase Approach to Potential Scattering (New York and London: Academic Press)
[23] Lide D R 2003 CRC Handbook of Chemistry and Physics (Boca Raton FL: CRC Press LLC)
[24] Kothari Harshit N and Joshipura K N 2009 Prajna J. Pure and Appl. Sci. (SPU India) 17 185
[25] Krishnakumar E and Srivastava S K 1988 J. Phys. B 21 1055
[26] Rapp D and Englander Golden P 1965 J. Chem. Phys. 43 1464
[27] Raith W 1998 in Photonic, Electronic and Atomic Collisions, Proc. XX ICPEAC 1997 Austria ed. Aumayr F and Winter H (Singapore: World Scientific) p. 341
[1] Electron-impact ionization cross section calculations for lithium-like ions
Guo-Jie Bian(卞国杰), Jyh-Ching Chang(张稚卿), Ke-Ning Huang(黄克宁), Chen-Sheng Wu(武晨晟), Yong-Jun Cheng(程勇军), Kai Wang(王凯), and Yong Wu(吴勇). Chin. Phys. B, 2022, 31(1): 013401.
[2] Dirac R-matrix calculations of photoionization cross sections of Ni XII and atomic structure data of Ni XIII
R T Nazir, M A Bari, M Bilal, S Sardar, M H Nasim, M Salahuddin. Chin. Phys. B, 2017, 26(2): 023102.
[3] Production of projectile and target K-vacancy in near-symmetric collisions of 60-100 MeV Cu9+ ions with thin Zn target
Yipan Guo(郭义盼), Zhihu Yang(杨治虎), Shubin Du(杜树斌), Hongwei Chang(常宏伟), Qingliang Xia(夏清良), Qiumei Xu(徐秋梅). Chin. Phys. B, 2016, 25(3): 033401.
[4] Influence of electron correlations on double-capture process in proton helium collisions
Hoda Ghavaminia, Ebrahim Ghanbari-Adivi. Chin. Phys. B, 2015, 24(7): 073401.
[5] Projectile angular-differential cross sections for single electron transfer in fast He+-He collisions
Ebrahim Ghanbari-Adivi, Hoda Ghavaminia. Chin. Phys. B, 2015, 24(3): 033401.
[6] Total cross sections for electron scattering from sulfur compounds
Tan Xiao-Ming (谭晓明), Wang Yan-Wen (王艳文). Chin. Phys. B, 2013, 22(2): 023403.
[7] Electron inelastic mean free paths in solids: A theoretical approach
Siddharth H. Pandya, B. G. Vaishnav, K. N. Joshipura. Chin. Phys. B, 2012, 21(9): 093402.
[8] Calculated cross sections for the single ionization of atoms (N, Cu, As, Se, Sn, Sb, Te, I, Pb) by electron impact
Hou Yu-Jun(侯育君), Cheng Xin-Lu(程新路), and Chen Heng-Jie(陈恒杰). Chin. Phys. B, 2009, 18(2): 553-557.
[9] Positron total cross sections for collisions with O2, H2O and CH4 in energy range from 30 to 3000eV
Shi De-Heng (施德恒), Liu Yu-Fang (刘玉芳), Sun Jin-Feng (孙金锋), Zhu Zun-Lue (朱遵略), Yang Xiang-Dong (杨向东). Chin. Phys. B, 2005, 14(5): 964-968.
[10] Additivity rule for electron scattering on hydrocarbon molecules—considering two different shielding effects
Sun Jin-Feng (孙金锋), Du Chao-Ling (杜朝玲), Shi De-Heng (施德恒), Liu Yu-Fang (刘玉芳). Chin. Phys. B, 2004, 13(9): 1418-1422.
[11] Electron scattering from molecule CH4 at 10-5000eV
Liu Yu-Fang (刘玉芳), Zhu Zun-Lüe (朱遵略), Sun Jin-Feng (孙金锋), Cong Shu-Lin (丛书林), Han Ke-Li (韩克利). Chin. Phys. B, 2003, 12(7): 750-752.
No Suggested Reading articles found!