Please wait a minute...
Chin. Phys. B, 2014, Vol. 23(5): 050202    DOI: 10.1088/1674-1056/23/5/050202
GENERAL Prev   Next  

A high order energy preserving scheme for the strongly coupled nonlinear Schrödinger system

Jiang Chao-Long, Sun Jian-Qiang
College of Information Science and Technology, Hainan University, Haikou 570228, China
Abstract  A high order energy preserving scheme for a strongly coupled nonlinear Schrödinger system is proposed by using the average vector field method. The high order energy preserving scheme is applied to simulate the soliton evolution of the strongly coupled Schrödinger system. Numerical results show that the high order energy preserving scheme can well simulate the soliton evolution, moreover, it preserves the discrete energy of the strongly coupled nonlinear Schrödinger system exactly.
Keywords:  average vector field method      strongly coupled nonlinear Schrödinger system      energy preserving scheme  
Received:  23 August 2013      Revised:  12 October 2013      Accepted manuscript online: 
PACS:  02.60.Cb (Numerical simulation; solution of equations)  
  02.70.Bf (Finite-difference methods)  
  02.30.Jr (Partial differential equations)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 11161017) and the National Science Foundation of Hainan Province, China (Grant No. 113001).
Corresponding Authors:  Sun Jian-Qiang     E-mail:  sunjq123@163.com
About author:  02.60.Cb; 02.70.Bf; 02.30.Jr

Cite this article: 

Jiang Chao-Long, Sun Jian-Qiang A high order energy preserving scheme for the strongly coupled nonlinear Schrödinger system 2014 Chin. Phys. B 23 050202

[1] Gross E 1963 J. Math. Phys. 4 195
[2] Wadati M, Izuka T and Hisakado M 1992 J. Phys. Soc. Jpn. 61 2241
[3] Zakharov V E and Schulman E I 1982 Physica D 4 270
[4] Aydin A and Karasözen B 2007 Comput. Phys. Commun. 177 566
[5] Zhang R P, Yu X J and Feng T 2012 Chin. Phys. B 21 030202
[6] Cai J X 2010 Appl. Math. Comput. 216 2417
[7] Qian X, Chen Y M, Gao E and Song S H 2012 Chin. Phys. B 21 120202
[8] Cai J X and Wang Y S 2013 Chin. Phys. B 22 060207
[9] Feng K and Qin M Z 2010 Symplectic Geometric Algorithms for Hamiltonian Systems (Heidelberg: Springer and Zhejiang Science and Technology Publishing House)
[10] Qin M Z and Wang Y S 2011 Structure-Perseving Algorithms for Partial Differential Equation (Hangzhou: Zhejiang Science and Technology Publishing House) (in Chinese)
[11] Cai J X, Yang B and Liang H 2013 Chin. Phys. B 22 030209
[12] Huang L Y, Jiao Y D and Liang D M 2013 Chin. Phys. B 22 070201
[13] Hong J L, Jiang S S and Li C 2009 J. Comput. Phys. 228 3157
[14] Quispel G R W and McLaren D I 2008 J. Phys. A: Math. Theor. 41 045206
[15] Celledoni E, Grimmv V, Mclachlan R I and Mclaren D I 2012 J. Comput. Phys. 231 6770
[16] Celledoni E, McLachlan R I, Owren B and Quispel G R W 2010 Found. Comput. Math. 10 673
[17] Chartier P, Faou E and Murua A 2006 Numer. Math. 103 575
[18] McLachlan R I, Quispel G R W and N Robidoux 1999 Phil. Trans. Roy. Soc. A 357 1021
[19] Sun J Q and Qin M Z 2003 Comput. Phys. Commun. 155 221
[1] Average vector field methods for the coupled Schrödinger–KdV equations
Zhang Hong, Song Song-He, Chen Xu-Dong, Zhou Wei-En. Chin. Phys. B, 2014, 23(7): 070208.
No Suggested Reading articles found!