Observation of the BEC-BCS crossover in a degenerate Fermi gas of lithium atoms
Xiang-Chuan Yan(严祥传)1,3, Da-Li Sun(孙大立)1,†, Lu Wang(王璐)1,3, Jing Min(闵靖)1,3, Shi-Guo Peng(彭世国)1, and Kai-Jun Jiang(江开军)1,2,‡
1 State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, China; 2 Center for Cold Atom Physics, Chinese Academy of Sciences, Wuhan 430071, China; 3 University of Chinese Academy of Sciences, Beijing 100049, China
Abstract We observe characteristic atomic behaviors in the Bose-Einstein-condensation-Bardeen-Cooper-Schrieffer (BEC-BCS) crossover, by accurately tuning the magnetic field across the Feshbach resonance of lithium atoms. The magnetic field is calibrated by measuring the Zeeman shift of the optical transition. A non-monotonic anisotropic expansion is observed across the Feshbach resonance. The density distribution is explored in different interacting regimes, where a condensate of diatomic molecules forms in the BEC limit with the indication of a bimodal distribution. We also measure the three-body recombination atom loss in the BEC-BCS crossover, and find that the magnetic field of the maximum atom loss is in the BEC limit and gets closer to the Feshbach resonance when decreasing the atom temperature, which agrees with previous experiments and theoretical prediction. This work builds up a controllable platform for the study on the strongly interacting Fermi gas.
Fund: This work has been supported by the National Key Research and Development Program of China (Grant No. 2016YFA0301503), the National Natural Science Foundation of China (Grant Nos. 11674358, 11434015, and 11974384), Chinese Academy of Sciences (Grant No. YJKYYQ20170025), and K.C. Wong Education Foundation (Grant No. GJTD-2019-15)).
Corresponding Authors:
Da-Li Sun, Da-Li Sun
E-mail: dlsun@wipm.ac.cn;kjjiang@wipm.ac.cn
Cite this article:
Xiang-Chuan Yan(严祥传), Da-Li Sun(孙大立), Lu Wang(王璐), Jing Min(闵靖), Shi-Guo Peng(彭世国), and Kai-Jun Jiang(江开军) Observation of the BEC-BCS crossover in a degenerate Fermi gas of lithium atoms 2022 Chin. Phys. B 31 016701
[1] DeMarco B and Jin D S 1999 Science285 1703 [2] Truscott A G, Strecker K E, McAlexanderWI, Partridge G B and Hulet R G 2001 Science291 2570 [3] Kinast J, Turlapov A, Thomas J E, Chen Q, Stajic J and Levin K 2005 Science307 1296 [4] Ku M J, Sommer A T, Cheuk L W and Zwierlein M W 2012 Science335 563 [5] Bloch I, Dalibard J and Zwerger W 2008 Rev. Mod. Phys.80 885 [6] Giorgini S, Pitaevskii L P and Stringari S 2008 Rev. Mod. Phys.80 1215 [7] Luo L, Clancy B, Joseph J, Kinast J and Thomas J 2007 Phys. Rev. Lett.98 080402 [8] Horikoshi M, Nakajima S, Ueda M and Mukaiyama T 2010 Science327 442 [9] Regal C, Greiner M and Jin D S 2004 Phys. Rev. Lett.92 040403 [10] Zwierlein M, Stan C, Schunck C, Raupach S, Kerman A and Ketterle W 2004 Phys. Rev. Lett.92 120403 [11] Heiselberg H 2004 Phys. Rev. Lett.93 040402 [12] Stringari S 2004 Europhys. Lett.65 749 [13] Chin J K, Miller D, Liu Y, Stan C, Setiawan W, Sanner C, Xu K and Ketterle W 2006 Nature443 961 [14] Zwierlein M W, Abo-Shaeer J R, Schirotzek A, Schunck C H and Ketterle W 2005 Nature435 1047 [15] Chin C, Grimm R, Julienne P and Tiesinga E 2010 Rev. Mod. Phys.82 1225 [16] Bourdel T, Khaykovich L, Cubizolles J, Zhang J, Chevy F, Teichmann M, Tarruell L, Kokkelmans S and Salomon C 2004 Phys. Rev. Lett.93 050401 [17] Bartenstein M, Altmeyer A, Riedl S, Jochim S, Chin C, Denschlag J H and Grimm R 2004 Phys. Rev. Lett.92 120401 [18] Partridge G B, Strecker K E, Kamar R I, Jack M W and Hulet R G 2005 Phys. Rev. Lett.95 020404 [19] Elliott E, Joseph J and Thomas J 2014 Phys. Rev. Lett.112 040405 [20] Deng S, Shi Z Y, Diao P, Yu Q, Zhai H, Qi R and Wu H 2016 Science353 371 [21] Fedichev P, Reynolds M and Shlyapnikov G 1996 Phys. Rev. Lett.77 2921 [22] Jo G B, Lee Y R, Choi J H, Christensen C A, Kim T H, Thywissen J H, Pritchard D E and Ketterle W 2009 Science325 1521 [23] Dieckmann K, Stan C A, Gupta S, Hadzibabic Z, Schunck C H and Ketterle W 2002 Phys. Rev. Lett.89 203201 [24] Jochim S, Bartenstein M, Altmeyer A, Hendl G, Chin C, Denschlag J H and Grimm R 2003 Phys. Rev. Lett.91 240402 [25] Bourdel T, Cubizolles J, Khaykovich L, Magalhaes K, Kokkelmans S, Shlyapnikov G and Salomon C 2003 Phys. Rev. Lett.91 020402 [26] Zhang S and Ho T L 2011 New. J. Phys.13 055003 [27] Yan X C, Sun D L, Wang L, Min J, Peng S G and Jiang K J 2021 Chin. Phys. Lett.38 056701 [28] O'hara K, Hemmer S, Gehm M, Granade S and Thomas J 2002 Science298 2179 [29] Veeravalli G 2009 Bragg Spectroscopy of a Strongly Interacting Fermi Gas (PhD Thesis) (Swinburne University of Technology) [30] Bartenstein M, Altmeyer A, Riedl S, Jochim S, Chin C, Denschlag J H and Grimm R 2004 Phys. Rev. Lett.92 120401 [31] Diana G, Manini N and Salasnich L 2006 Phys. Rev. A73 065601 [32] Deng S J, Diao P P, Yu Q L and Wu H B 2015 Chin. Phys. Lett.32 53401 [33] Cao C, Elliott E, Joseph J, Wu H, Petricka J, Schäfer T and Thomas J E 2011 Science331 58 [34] Elliott E, Joseph J A and Thomas J E 2014 Phys. Rev. Lett.113 020406 [35] Esry B, Greene C H and Burke Jr J P 1999 Phys. Rev. Lett.83 1751
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.