Please wait a minute...
Chin. Phys. B, 2017, Vol. 26(8): 086701    DOI: 10.1088/1674-1056/26/8/086701
CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES Prev   Next  

Quench dynamics of ultracold atoms in one-dimensional optical lattices with artificial gauge fields

Xiaoming Cai(蔡小明)
State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan 430071, China
Abstract  

We study the quench dynamics of noninteracting ultracold atoms loaded in one-dimensional (1D) optical lattices with artificial gauge fields, which are modeled by lattices with complex hopping coefficients. After suddenly changing the hopping coefficient, time evolutions of the density distribution, momentum distribution, and mass current at the center are studied for both finite uniform systems and trapped systems. Effects of filling factor, system size, statistics, harmonic trap, and phase difference in hopping are identified, and some interesting phenomena show up. For example, for a finite uniform fermionic system shock and rarefaction wave plateaus are formed at two ends, whose wave fronts move linearly with speed equaling to the maximal absolute group velocity. While for a finite uniform bosonic system the whole density distribution moves linearly at the group velocity. Only in a finite uniform fermionic system there can be a constant quasi-steady-state current, whose amplitude is decided by the phase difference and filling factor. The quench dynamics can be tested in ultracold atoms with minimal modifications of available experimental techniques, and it is a very interesting and fundamental example of the transport phenomena and the nonequilibrium dynamics.

Keywords:  nonequilibrium dynamics      1D optical Lattice      artificial gauge field      quasi-steady-state current  
Received:  15 December 2016      Revised:  10 May 2017      Accepted manuscript online: 
PACS:  67.85.-d (Ultracold gases, trapped gases)  
  05.60.Gg (Quantum transport)  
  72.10.-d (Theory of electronic transport; scattering mechanisms)  
  67.10.Jn (Transport properties and hydrodynamics)  
Fund: 

Project supported by the National Natural Science Foundation of China (Grant Nos. 11374331, 11304364, and 11534014).

Corresponding Authors:  Xiaoming Cai     E-mail:  cxmpx@wipm.ac.cn
About author:  0.1088/1674-1056/26/8/

Cite this article: 

Xiaoming Cai(蔡小明) Quench dynamics of ultracold atoms in one-dimensional optical lattices with artificial gauge fields 2017 Chin. Phys. B 26 086701

[1] Greiner M, Mandel O, Hänsch T W and Bloch I 2002 Nature 419 51
[2] Kinoshita T, Wenger T and Weiss D S 2004 Science 305 1125
[3] Trotzky S, Chen Y A, Flesch A, McCulloch I P, Schollwöck U, Eisert J and Bloch I 2012 Nat. Phys. 8 325
[4] Gring M, Kuhnert M, Langen T, Kitagawa T, Rauer B, Schreitl M, Mazets I, Smith D A, Demler E and Schmiedmayer J 2012 Science 337 1318
[5] Cheneau M, Barmettler P, Poletti D, Endres M, Schauß P, Fukuhara T, Gross C, Bloch I, Kollath C and Kuhr S 2012 Nature 481 484
[6] Schneider U, Hackermüller L, Ronzheimer J P, Will S, Braun S, Best T, Bloch I, Demler E, Mandt S, Rasch D and Rosch A 2012 Nat. Phys. 8 213
[7] Ronzheimer J P, Schreiber M, Braun S, Hodgman S S, Langer S, McCulloch I P, Heidrich-Meisner F, Bloch I and Schneider U 2013 Phys. Rev. Lett. 110 205301
[8] Bardarson J H, Pollmann F and Moore J E 2012 Phys. Rev. Lett. 109 017202
[9] Vosk R and Altman E 2013 Phys. Rev. Lett. 110 067204
[10] Lamacraf A 2007 Phys. Rev. Lett. 98 160404
[11] Hofferberth S, Lesanovsky I, Fischer B, Schumm T and Schmiedmayer J 2007 Nature 449 324
[12] Hung C L, Zhang X, Gemelke N and Chin C 2010 Phys. Rev. Lett. 104 160403
[13] Rigol M 2009 Phys. Rev. Lett. 103 100403
[14] Rigol M, Dunjko V and Olshanii M 2008 Nature 452 854
[15] Fagotti M 2013 Phys. Rev. B 87 165106
[16] Pozsģay B 2013 J. Stat. Mech. P07003
[17] Pozsģay B 2013 J. Stat. Mech. P10028
[18] Collura M, Sotiriadis S and Calabrese P 2013 J. Stat. Mech. P09025
[19] Bucciantini L, Kormos M and Calabrese P 2014 J. Phys. A: Math. Theor. 47 175002
[20] Fagotti M, Collura M, Essler F H L and Calabrese P 2014 Phys. Rev. B 89 125101
[21] Ott H, de Mirandes E, Ferlaino F, Roati G, Modugno G and Inguscio M 2004 Phys. Rev. Lett. 92 160601
[22] Strohmaier N, Takasu Y, Günter K, Jördens R, Köhl M, Moritz H and Esslinger T 2007 Phys. Rev. Lett. 99 220601
[23] Cramer M, Dawson C M, Eisert J and Osborne T J 2008 Phys. Rev. Lett. 100 030602
[24] Chien C C, Zwolak M and Di Ventra M 2012 Phys. Rev. A 85 041601
[25] Chien C C, Gruss D, Di Ventra M and Zwolak M 2013 New J. Phys. 15 063026
[26] Killi M and Paramekanti A 2012 Phys. Rev. A 85 061606
[27] Chien C C and Di Ventra M 2013 Phys. Rev. A 87 023609
[28] Peotta S, Chien C C and Di Ventra M 2014 Phys. Rev. A 90 053615
[29] Lin Y J, Jiménez-García K and Spielman I B 2011 Nature 471 83
[30] Lin Y J, Compton R L, Jiménez-García K, Porto J V and Spielman I B 2009 Nature 462 628
[31] Lin Y J, Compton R L, Jiménez-García K, Phillips W D, Porto J V and Spielman I B 2011 Nat. Phys. 7 531
[32] Wang P, Yu Z Q, Fu Z K, Miao J, Huang L H, Chai S J, Zhai H and Zhang J 2012 Phys. Rev. Lett. 109 095301
[33] Cheuk L W, Sommer A T, Hadzibabic Z, Yefsah T, Bakr W S and Zwierlein M W 2012 Phys. Rev. Lett. 109 095302
[34] Dalibard J, Gerbier F, Juzeliūnas G and Öhberg P 2011 Rev. Mod. Phys. 83 1523
[35] Jiménez-García K, LeBlanc L J, Williams R A, Beeler M C, Perry A R and Spielman I B 2012 Phys. Rev. Lett. 108 225303
[36] Struck J, Ölschläger C, Weinberg M, Hauke P, Simonet J, Eckardt A, Lewenstein M, Sengstock K and Windpassinger P 2012 Phys. Rev. Lett. 108 225304
[37] Hofstadter D R 1976 Phys. Rev. B 14 2239
[38] Gaunt A L, Schmidutz T F, Gotlibovych I, Smith R P and Hadzibabic Z 2013 Phys. Rev. Lett. 110 200406
[39] Fertig C D, O'Hara K M, Huckans J H, Rolston S L, Phillips W D and Porto J V 2005 Phys. Rev. Lett. 94 120403
No Suggested Reading articles found!