Please wait a minute...
Chin. Phys. B, 2016, Vol. 25(7): 078702    DOI: 10.1088/1674-1056/25/7/078702
INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY Prev  

Physical mechanism of mind changes and tradeoffs among speed, accuracy, and energy cost in brain decision making: Landscape, flux, and path perspectives

Han Yan(闫晗)1,2, Kun Zhang(张坤)2, Jin Wang(汪劲)1,2,3
1 College of Physics, Jilin University, Changchun 130012, China;
2 State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China;
3 Department of Chemistry and Physics, Stony Brook University, Stony Brook, NY 11794-3400, USA
Abstract  

Cognitive behaviors are determined by underlying neural networks. Many brain functions, such as learning and memory, have been successfully described by attractor dynamics. For decision making in the brain, a quantitative description of global attractor landscapes has not yet been completely given. Here, we developed a theoretical framework to quantify the landscape associated with the steady state probability distributions and associated steady state curl flux, measuring the degree of non-equilibrium through the degree of detailed balance breaking for decision making. We quantified the decision-making processes with optimal paths from the undecided attractor states to the decided attractor states, which are identified as basins of attractions, on the landscape. Both landscape and flux determine the kinetic paths and speed. The kinetics and global stability of decision making are explored by quantifying the landscape topography through the barrier heights and the mean first passage time. Our theoretical predictions are in agreement with experimental observations: more errors occur under time pressure. We quantitatively explored two mechanisms of the speed-accuracy tradeoff with speed emphasis and further uncovered the tradeoffs among speed, accuracy, and energy cost. Our results imply that there is an optimal balance among speed, accuracy, and the energy cost in decision making. We uncovered the possible mechanisms of changes of mind and how mind changes improve performance in decision processes. Our landscape approach can help facilitate an understanding of the underlying physical mechanisms of cognitive processes and identify the key factors in the corresponding neural networks.

Keywords:  decision making      non-equilibrium landscape and flux      speed-accuracy tradeoff      energy cost  
Received:  20 January 2016      Revised:  20 April 2016      Published:  05 July 2016
PACS:  87.19.lj (Neuronal network dynamics)  
  87.19.ll (Models of single neurons and networks)  
  87.18.Vf (Systems biology)  
  05.10.-a (Computational methods in statistical physics and nonlinear dynamics)  
Fund: 

Project supported by the National Natural Science Foundation of China (Grant Nos. 21190040, 91430217, and 11305176).

Corresponding Authors:  Jin Wang     E-mail:  jin.wang.1@stonybrook.edu

Cite this article: 

Han Yan(闫晗), Kun Zhang(张坤), Jin Wang(汪劲) Physical mechanism of mind changes and tradeoffs among speed, accuracy, and energy cost in brain decision making: Landscape, flux, and path perspectives 2016 Chin. Phys. B 25 078702

[1] Abbott L F 2008 Neuron 60 489
[2] Vogels T P, Rajan K and Abbott L F 2005 Annu. Rev. Neurosci. 28 357
[3] Hopfield J J 1982 Proc. Natl. Acad. Sci.-Biol. 79 2554
[4] Li Z P and Hertz J 2000 Network-Comp. Neural. 11 83
[5] Mohr P N C, Biele G and Heekeren H R 2010 J. Neurosci. 30 6613
[6] Churchland A K, Kiani R and Shadlen M N 2008 Nat. Neurosci. 11 851
[7] Niwa M and Ditterich J 2008 J. Neurosci. 28 4435
[8] Ratcliff R, Van Zandt T and McKoon G 1999 Psychol. Rev. 106 261
[9] Gold J I and Shadlen M N 2007 Annu. Rev. Neurosci. 30 535
[10] Wang X J 2008 Neuron 60 215
[11] Roxin A and Ledberg A 2008 PLoS Comput. Biol. 4 e1000046
[12] Ratcliff R and Rouder J N 1998 Psychological Science 9 347
[13] Shadlen M N and Newsome W T 2001 J. Neurophysiol. 86 1916
[14] Wang X J 2002 Neuron 36 955
[15] Wong K F and Wang X J 2006 J. Neurosci. 26 1314
[16] Wong K F, Huk A C, Shadlen M N and Wang X J 2007 Front. Comput. Neurosc. 1 6
[17] Li Z P and Dayan P 1999 Network-Comp. Neural. 10 59
[18] Amit D J 1992 Modeling Brain Function: The World of Attractor Neural Networks (Cambridge: Cambridge University Press)
[19] Sasai M and Wolynes P G 2003 Proc. Natl. Acad. Sci. USA 100 2374
[20] Wang J, Xu L and Wang E K 2008 Proc. Natl. Acad. Sci. USA 105 12271
[21] Wang J, Li C H and Wang E K 2010 Proc. Natl. Acad. Sci. USA 107 8195
[22] Wang J, Zhang K, Xu L and Wang E K 2011 Proc. Natl. Acad. Sci. USA 108 8257
[23] Yan H, Zhao L, Hu L, Wang X D, Wang E K and Wang J 2013 Proc. Natl. Acad. Sci. USA 110 E4185
[24] Wang J 2015 Adv. Phys. 64 1
[25] Xu L, Chu X K, Yan Z Q, Zheng X L, Zhang K, Zhang F, Yan H, Wu W and Wang J 2016 Chin. Phys. B 25 016401
[26] Deco G and Marti D 2007 Biol. Cybern. 96 487
[27] Deco G and Marti D 2007 Phys. Rev. E 75 031913
[28] Zhang F, Xu L, Zhang K, Wang E K and Wang J 2012 J. Chem. Phys. 137 065102
[29] Qian H 2009 Method. Enzymol. 467 111
[30] Feng H and Wang J 2011 J. Chem. Phys. 135 234511
[31] Xu L, Shi H, Feng H and Wang J 2012 J. Chem. Phys. 136 165102
[32] Wang J, Zhang K and Wang E 2010 J. Chem. Phys. 133 125103
[33] Elowitz M B, Levine A J Siggia E D and Swain P S 2002 Science 297 1183
[34] Wang J, Xu L, Wang E K and Huang S 2010 Biophys. J. 99 29
[35] Shadlen M N and Newsome W T 1996 Proc. Natl. Acad. Sci. USA 93 628
[36] Roitman J D and Shadlen M N 2002 J. Neurosci. 22 9475
[37] Huk A C and Shadlen M N 2005 J. Neurosci. 25 10420
[38] Mazurek M E, Roitman J D, Ditterich J and Shadlen M N 2003 Cereb. Cortex. 13 1257
[39] Resulaj A, Kiani R, Wolpert D M and Shadlen M N 2009 Nature 461 263
[40] Waddington C H 1957 The Strategy of the Genes (London: London Pub)
[41] Wickelgren W A 1977 Acta Psychol. 41 67
[42] Chittka L, Skorupski P and Raine N E 2009 Trends. Ecol. Evol. 24 400
[43] Bogacz R, Wagenmakers E J, Forstmann B U and Nieuwenhuis S 2010 Trends. Neurosci. 33 10
[44] Albantakis L and Deco G 2011 PLoS Comput. Biol. 7 e1002086
[45] Albantakis L, Branzi F M, Costa A and Deco G 2012 Plos One 7 e43131
[46] Ivanoff J, Branning P and Marois R 2008 Plos One 3 e2635
[47] van Veen V, Krug M K and Carter C S 2008 J. Cognitive Neurosci. 20 1952
[48] Heitz R P and Schall J D 2012 Neuron 76 616
[49] Forstmann B U, Dutilh G, Brown S, Neumann J, von Cramon D Y, Ridderinkhof K R and Wagenmaker E J 2008 Proc. Natl. Acad. Sci. USA 105 17538
[50] Magistretti P J, Pellerin L, Rothman D L and Shulman R G 1999 Science 283 496
[51] Binder J R, Liebenthal E, Possing E T, Medler D A and Ward B D 2004 Nat. Neurosci. 7 295
[52] Heekeren H R, Marrett S and Ungerleider L G 2008 Nat. Rev. Neurosci. 9 467
[1] Enhanced vibrational resonance in a single neuron with chemical autapse for signal detection
Zhiwei He(何志威), Chenggui Yao(姚成贵), Jianwei Shuai(帅建伟), and Tadashi Nakano. Chin. Phys. B, 2020, 29(12): 128702.
[2] Generating mechanism of pathological beta oscillations in STN-GPe circuit model: A bifurcation study
Jing-Jing Wang(王静静), Yang Yao(姚洋), Zhi-Wei Gao(高志伟), Xiao-Li Li(李小俚), Jun-Song Wang(王俊松). Chin. Phys. B, 2020, 29(5): 058701.
[3] Astrocyte and ions metabolism during epileptogenesis: A review for modeling studies
Meng-Meng Du(独盟盟), Jia-Jia Li(李佳佳), Zhi-Xuan Yuan(袁治轩), Yong-Chen Fan(范永晨), Ying Wu(吴莹). Chin. Phys. B, 2020, 29(3): 038701.
[4] Effects of refractory period on dynamical range inexcitable networks
Ya-Qin Dong(董亚琴), Fan Wang(王帆), Sheng-Jun Wang(王圣军), Zi-Gang Huang(黄子罡). Chin. Phys. B, 2019, 28(12): 128701.
[5] Attractors with controllable basin sizes from cooperation of contracting and expanding dynamics in pulse-coupled oscillators
Hai-Lin Zou(邹海林) Zi-Chen Deng(邓子辰). Chin. Phys. B, 2019, 28(1): 010502.
[6] Effects of channel noise on synchronization transitions in delayed scale-free network of stochastic Hodgkin-Huxley neurons
Wang Bao-Ying, Gong Yu-Bing. Chin. Phys. B, 2015, 24(11): 118702.
[7] Plasticity-induced characteristic changes of pattern dynamics and the related phase transitions in small-world neuronal networks
Huang Xu-Hui, Hu Gang. Chin. Phys. B, 2014, 23(10): 108703.
[8] Rhythm dynamics of complex neuronal networks with mixed bursting neurons
Lü Yong-Bing, Shi Xia, Zheng Yan-Hong. Chin. Phys. B, 2013, 22(4): 040505.
[9] Bursting synchronization in clustered neuronal networks
Yu Hai-Tao, Wang Jiang, Deng Bin, Wei Xi-Le. Chin. Phys. B, 2013, 22(1): 018701.
[10] Erratum to “Coherence resonance in globally coupled neuronal networks with different neuron numbers”
Ning Wei-Lian, Zhang Zheng-Zhen, Zeng Shang-You, Luo Xiao-Shu, Hu Jin-Lin, Zeng Shao-Wen, Qiu Yi, Wu Hui-Si. Chin. Phys. B, 2013, 22(1): 018702.
[11] Spiking sychronization regulated by noise in three types of Hodgkin–Huxley neuronal networks
Zhang Zheng-Zhen, Zeng Shang-You, Tang Wen-Yan, Hu Jin-Lin, Zeng Shao-Wen, Ning Wei-Lian, Qiu Yi, Wu Hui-Si. Chin. Phys. B, 2012, 21(10): 108701.
[12] Chaotic diagonal recurrent neural network
Wang Xing-Yuan,Zhang Yi. Chin. Phys. B, 2012, 21(3): 038703.
[13] Coherence resonance in globally coupled neuronal networks with different neuron numbers
Ning Wei-Lian,Zhang Zheng-Zhen,Zeng Shang-You,Luo Xiao-Shu,Hu Jin-Lin,Zeng Shao-Wen,Qiu Yi,Wu Hui-Si. Chin. Phys. B, 2012, 21(2): 028702.
No Suggested Reading articles found!