Please wait a minute...
Chin. Phys. B, 2016, Vol. 25(12): 120301    DOI: 10.1088/1674-1056/25/12/120301
GENERAL Prev   Next  

New approach for anti-normally and normally ordering bosonic-operator functions in quantum optics

Shi-Min Xu(徐世民)1, Yun-Hai Zhang(张运海)1, Xing-Lei Xu(徐兴磊)1, Hong-Qi Li(李洪奇)1, Ji-Suo Wang(王继锁)2
1. Department of Physics and Electronic Engineering, Heze University, Heze 274015, China;
2. College of Physics and Engineering, Qufu Normal University, Qufu 273165, China

In this paper, we provide a new kind of operator formula for anti-normally and normally ordering bosonic-operator functions in quantum optics, which can help us arrange a bosonic-operator function f(λ+ν) in its anti-normal and normal ordering conveniently. Furthermore, mutual transformation formulas between anti-normal ordering and normal ordering, which have good universality, are derived too. Based on these operator formulas, some new differential relations and some useful mathematical integral formulas are easily derived without really performing these integrations.

Keywords:  Baker-Hausdorff formula      operator differentiation      mutual transformation     
Received:  15 June 2016      Published:  05 December 2016
PACS:  03.65.-w (Quantum mechanics)  
  03.67.-a (Quantum information)  
  42.50.Dv (Quantum state engineering and measurements)  

Project supported by the Natural Science Foundation of Shandong Province, China (Grant No. ZR2015AM025) and the Natural Science Foundation of Heze University, China (Grant No. XY14PY02).

Corresponding Authors:  Hong-Qi Li     E-mail:

Cite this article: 

Shi-Min Xu(徐世民), Yun-Hai Zhang(张运海), Xing-Lei Xu(徐兴磊), Hong-Qi Li(李洪奇), Ji-Suo Wang(王继锁) New approach for anti-normally and normally ordering bosonic-operator functions in quantum optics 2016 Chin. Phys. B 25 120301

[1] Witschel W 2005 Phys. Lett. A 334 140
[2] Mansour T and Schork M J 2008 Math. Phys. 15 77
[3] Ballentine L E 1998 Quantum mechanics:Modern Development (Singapore:World Scientific)
[4] Schleich W P 2001 Quantum Optics in Phase Space (New York:Wiley)
[5] Klauder J R and Sudarshan 1968 Fundamentals of Quantum Optics (New York:W A Benjamin)
[6] Glauber R J 1963 Phys. Rev. 130 2529
[7] Glauber R J 1963 Phys. Rev. 131 2766
[8] Klauder J R and Skagerstam B S 1985 Coherence States (Singapore:World Scientific)
[9] Mehta C L 1967 Phys. Rev. Lett. 18 752
[10] Louisell W H 1973 Quantum Statistical Properties of Radiation (New York:Wiley)
[11] Glauber R J 1963 Phys. Rev. 131 7662
[12] Fan H Y, Lu H L and Fan Y 2006 Ann. Phys. 321 480
[13] Wünsche A 1999 J. Opt. B-Quantum Semicl. Opt. 1 R11
[14] Yuan H C, Xu X X and Fan H Y 2010 Sci. China Ser. G-Phys. Mech. Astron. 53 1793
[15] Wang J S, Fan H Y and Meng X G 2012 Chin. Phys. B 21 064204
[16] Shao Y C and Fan H Y 2008 Commun. Theor. Phys. 49 866
[17] Meng X G, Wang J S and Liang B L 2009 Chin. Phys. B 18 1534
[18] Li H M and Yuan H C 2010 Int. J. Theor. Phys. 49 2121
[19] Erdelyi A 1953 Higher Transcendental Function:The Batemann Manuscript Project (New York:McGrawHill)
[20] Rainville E D 1960 Special functions (New York:MacMillan Comp.) p. 187
[1] Mutual transformations between the P–Q,Q–P, and generalized Weyl ordering of operators
Xu Xing-Lei, Li Hong-Qi, Fan Hong-Yi. Chin. Phys. B, 2014, 23(3): 030305.
No Suggested Reading articles found!