Please wait a minute...
Chin. Phys. B, 2014, Vol. 23(6): 064210    DOI: 10.1088/1674-1056/23/6/064210

Precipitation efficiency and its relationship to physical factors

Zhou Yu-Shua, Li Xiao-Fanb, Gao Shou-Tinga
a Laboratory of Cloud-Precipitation Physics and Severe Storms (LACS), Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029, China;
b Department of Earth Sciences, Zhejiang University, Hangzhou 310027, China
Abstract  The precipitation efficiency and its relationship to physical factors are examined by analyzing a two-dimensional cloud-resolving model simulation during TOGA COARE in this study. The basic physical factors include convective available potential energy, water-vapor convergence, vertical wind shear, cloud ratio, sea surface temperature, air temperature, and precipitable water. Precipitation efficiencies do not show a close relationship to air temperature nor to sea surface temperature nor to precipitable water. The precipitation efficiency increases as the water-vapor convergence rate increases and vertical wind shear weakens, whereas it decreases as the convective available potential energy dissipates and anvil clouds develop.
Keywords:  precipitation efficiency      water-vapor convergence      convective available potential energy      cloud ratio     
Received:  30 July 2013      Published:  15 June 2014
PACS:  42.68.Ge (Effects of clouds and water; ice crystal phenomena)  
  92.60.N- (Cloud physics and chemistry)  
  92.60.jf (Precipitation)  
  92.60.Wc (Weather analysis and prediction)  
Fund: Project supported by the National Basic Research Program of China (Grant No. 2014CB441402), the National Natural Science Foundation of China (Grant Nos. 41275065, 41075044, and 41075043), and the 985 Program of Zhejiang University.
Corresponding Authors:  Li Xiao-Fan     E-mail:

Cite this article: 

Zhou Yu-Shu, Li Xiao-Fan, Gao Shou-Ting Precipitation efficiency and its relationship to physical factors 2014 Chin. Phys. B 23 064210

[1] Doswell C A, Brooks H E and Maddox R A 1996 Wea. Forecasting 11 560
[2] Auer A H Jr and Marwitz J D 1968 J. Appl. Meteor. 7 196
[3] Heymsfield G M and Schotz S 1985 Mon. Wea. Rev. 113 1563
[4] Chong M and Hauser D 1989 Mon. Wea. Rev. 117 728
[5] Ferrier B S, Simpson J and Tao W K 1996 Mon. Wea. Rev. 124 2100
[6] Li X, Sui C H and Lau K M 2002 J. Meteor. Soc. Jpn. 80 205
[7] Tao W K, Johnson D, Shie C L and Simpson J 2004 J. Atmos. Sci. 61 2405
[8] Sui C H, Li X, Yang M J and Huang H L 2005 J. Atmos. Sci. 62 4358
[9] Sui C H, Li X and Yang M J 2007 J. Atmos. Sci. 64 4506
[10] Gao S and Li X 2011 Quart. J. Roy. Meteor. Soc. 137 969
[11] Shen X, Qing T and Li X 2013 Chin. Phys. B 22 092413
[12] Soong S T and Ogura Y 1980 J. Atmos. Sci. 37 2035
[13] Tao W K and Simpson J 1993 Terr. Atmos. Oceanic. Sci. 4 35
[14] Li X, Sui C H, Lau K M and Chou M D 1999 J. Atmos. Sci. 56 3028
[15] Lin Y L, Farley R D and Orville H D 1983 J. Climate Appl. Meteor. 22 1065
[16] Rutledge S A and Hobbs P V 1983 J. Atmos. Sci. 40 1185
[17] Rutledge S A and Hobbs P V 1984 J. Atmos. Sci. 41 2949
[18] Tao W K, Simpson J and McCumber M 1989 Mon. Wea. Rev. 117 231
[19] Krueger S K, Fu Q, Liou K N and Chin H N S 1995 J. Appl. Meteor. 34 281
[20] Chou M D, Kratz D P and Ridgway W 1991 J. Climate 4 424
[21] Chou M D, Suarez M J, Ho C H, Yan M M H and Lee K T 1998 J. Atmos. Sci. 55 201
[22] Chou M D and Suarez M J 1994 NASA Tech. Memo. 3 85
[23] Gao S and Li X 2008 Cloud-Resolving Modeling of Convective Processes (Berlin: Springer Press)
[24] Li X and Gao S 2011 Precipitation Modeling and Quantitative Analysis (Berlin: Springer Press)
[25] Gao S, Cui X, Zhou Y and Li X 2004 J. Geophys. Res. 110 D10202
[26] Gao S and Li X 2008 Quart. J. Roy. Meteor. Soc. 134 2127
[27] Gao S, Ran L and Li X 2006 Mon. Wea. Rev. 134 3015
[28] Gao S, Cui X and Li X 2009 Adv. Atmos. Sci. 26 895
[29] Gao S and Li X 2010 J. Geophys. Res. 115 D08204
[30] Li X, Sui C H and Lau K M 2002 J. Atmos. Sci. 59 1712
[31] Wang D, Li X, Tao W K and Wang Y 2009 Atmos. Res. 94 270
[32] Shen X, Wang Y and Li X 2011 Quart. J. Roy. Meteor. Soc. 137 236
[33] Sui C H and Li X 2005 Terr. Atmos. Oceanic Sci. 16 419
[34] Arakawa A and Schubert W H 1974 J. Atmos. Sci. 31 674
[1] Effects of clouds, sea surface temperature, and its diurnal variation on precipitation efficiency
Shen Xin-Yong, Qing Tao, Li Xiao-Fan. Chin. Phys. B, 2013, 22(9): 094213.
No Suggested Reading articles found!