Please wait a minute...
Chin. Phys. B, 2014, Vol. 23(5): 057205    DOI: 10.1088/1674-1056/23/5/057205

Fabrication and electrochemical performance of graphene-ZnO nanocomposites

Li Zhen-Peng, Men Chuan-Ling, Wang Wan, Cao Jun
School of Energy and Power Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China

Graphene-ZnO nanocomposites were synthesized successfully through a one-step solvothermal approach. The morphology, structure, and composition of the prepared nanocomposites were investigated by scanning electron microscopy (SEM), transmission electron microscope (TEM), laser micro Raman spectroscopy, and Fourier transform infra-red spectroscopy (FT-IR). The outcomes confirmed that this approach is comparatively steady, practicable, and operable compared with other reported methods. The electrochemical performance of the graphene-ZnO electrodes was analyzed through cyclic voltammetry, altering-current (AC) impedance, and chronopotentiometry tests. The graphene-ZnO electrodes exhibited an improved electrode performance with higher specific capacitance (115 F·g-1), higher electrochemical stability, and higher energy density than the graphene electrodes and most reported graphene-ZnO electrodes. Graphene-ZnO nanocomposites have a steady reversible charge/discharge behavior, which makes them promising candidates for electrochemical capacitors (ECs).

Keywords:  graphene-ZnO nanocomposites      electrochemical performance      electrochemical capacitors  
Received:  15 October 2013      Revised:  25 November 2013      Published:  15 May 2014
PACS:  72.80.Tm (Composite materials)  
  82.45.Rr (Electroanalytical chemistry)  
  82.47.Uv (Electrochemical capacitors; supercapacitors)  

Project supported by the National Natural Science Foundation of China (Grant Nos. 61265004, 51272097, and 11204113), the Nature and Science Fund from Yunnan Province Ministry of Education, China (Grant No. 2011C13211708), and the Natural Training Project from University of Shanghai for Science and Technology, China (Grant No. 14XPM06).

Corresponding Authors:  Men Chuan-Ling     E-mail:
About author:  72.80.Tm; 82.45.Rr; 82.47.Uv

Cite this article: 

Li Zhen-Peng, Men Chuan-Ling, Wang Wan, Cao Jun Fabrication and electrochemical performance of graphene-ZnO nanocomposites 2014 Chin. Phys. B 23 057205

[1] Stephanie L, Shao Y Y, Zhou W, Li X L, Jie X, Zhang J G, Wang J, Liu J, Li J H and Cao G Z 2012 Nano Energy 1 195
[2] Yang J S, Huang D H, Cao Q L, Li Q, Wang L Z and Wang F H 2013 Chin. Phys. B 22 098101
[3] Guo S J and Dong S J 2011 Chem. Soc. Rev. 40 2644
[4] Zhang X, Sun X, Chen Y, Zhang D and Ma Y 2012 Mater. Lett. 68 336
[5] Lu M M, Yuan J, Wen B, Liu J, Cao W Q and Cao S 2013 Chin. Phys. B 22 037701
[6] Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang, Dubonos S V, Grigorieva I V and Firsov A A 2004 Science 306 666
[7] Wang J Y, Li Z Q, Fan G, Pan H H, Chen Z and Zhang D 2012 Scripta Mater. 66 594
[8] Liu Y Z, Li Y F, Yang Y G, Wen Y F and Wang M Z 2013 Scripta Mater. 68 301
[9] Li Y F, Liu Y Z, Shen W Z, Yang Y G, Wen Y F and Wang M Z 2011 Mater. Lett. 65 2518
[10] Geim A K and Novoselov K S 2007 Nat. Mater. 6 183
[11] Chen S, Zhu J, Wu X, Han Q and Wang X 2010 ACS Nano 4 2822
[12] Lee B J, Sivakkumar S R, Ko J M, Kim J H, Seong M J and Dong Y K 2007 J. Power Sources 168 546
[13] Shan Y and Gao L 2007 Mater. Chem. Phys. 103 206
[14] Yan J, Fan Z J, Wei T, Qian W Z, Zhang M and Wei F 2010 Carbon 48 3825
[15] Kyeong-Won P and Jong H J 2012 J. Power Sources 199 379
[16] Zhang Y P, Li H B, Pan L K, Lu T and Sun Z 2009 J. Electroanal. Chem. 634 68
[17] Zhang P Z, Li R S, Pan X J and Xie E Q 2013 Chin. Phys. B 22 058106
[18] Wang Y, Li X, Wang N, Quan X and Chen Y 2008 Sep. Purif. Technol. 62 727
[19] Tian C, Li W, Pan K, Zhang Q, Tian G, Zhou W and Fu H 2010 J. Solid State Chem. 183 2720
[20] Kind H, Yan H, Messer B, Law M and Yang P 2002 Adv. Mater. 14 158
[21] Huang M H, Mao S, Feick H, Yan H, Wu Y, Kind H, Weber E, Russo R and Yang P 2001 Science 292 1897
[22] Wan Q, Li Q H, Chen Y J, Wang T H, He X L, Li J P and Lin C L 2004 Appl. Phys. Lett. 84 3654
[23] Ito Y, Nyce M, Plivelich R, Klein M, Steingart D and Banerjee S 2011 J. Power Sources 196 2340
[24] Zeng H D, Cao Y, Xie S F, Yang J H, Tang Z H, Wang X Y and Sun L Y 2013 Nanoscale Res. Lett. 8 133
[25] Chen Y L, Hu Z A, Chang Y Q, Wang H W, Zhang Z Y, Yang Y Y and Wu H Y 2011 J. Phys. Chem. C 115 2563
[26] Bai S and Shen X P 2012 RSC Adv. 2 64
[27] Qu J, Luo C Q and Cong Q 2011 Nano-Micro. Lett. 3 115
[28] Zhang Y, Li H, Pan L, Lu T and Sun Z 2009 J. Electroanal. Chem. 634 68
[29] Lu T, Zhang Y, Li H, Pan L, Li Y and Sun Z 2010 Electrochim. Acta 55 4170
[30] Guo G, Huang L, Chang Q, Ji L, Liu Y, Xie Y, Shi W and Jia N 2011 Appl. Phys. Lett. 99 83111
[31] Ananthakumar R and Kim S J 2013 Mater. Chem. Phy. 140 405
[32] Wang J, Gao Z, Li Z S, Wang B, Yan Y X, Liu Q, Mann T, Zhang M and Jiang Z H 2011 J. Solid State Chem. 184 1421
[33] Dong X C, Cao Y F, Wang, J, Chan-Park M B, Wang L H, Huang W and Chen P 2012 RSC Adv. 2 4364
[34] Zhu J W, Liu H B, Liu X H, Wang X, Yang X J and Lu L D 2009 J. Wuhan Univ. Technol. 24 30
[35] Lambert T N, Chavez C A, Hernandez-Sanchez B, Lu P, Bell N S, Ambrosini A, Friedman T, Boyle T J, Wheeler D R and Huber D L 2009 J. Phys. Chem. C 113 19812
[36] Li D, Müller M B, Gilje S, Kaner R B and Wallace G G 2008 Nat. Nanotechnol. 3 101
[37] Lu T, Pan L K, Li H B, Zhu G, Lv T, Liu X J, Sun Z, Chen T and Daniel H C 2011 J. Alloys Compd. 509 5488
[38] Hummers W S and Offeman R E 1958 J. Am. Chem. Soc. 80 1339
[39] Krishnamoorthy K, Mohan R and Kim S J 2011 Appl. Phys. Lett. 98 244101
[40] Liu Y Z, Li Y F, Yang Y G, Wen Y F and Wang M Z 2013 Scripta Mater. 68 301
[41] Zou W B, Zhu J W, Sun Y X and Wang X 2011 Mater. Chem. Phys. 125 617
[42] Li Q, Li Z, Chen M and Fang Y 2009 Nano Lett. 9 2129
[43] Xu C, Wang X and Zhu J 2008 J. Phys. Chem. C 112 19841
[44] Cai D and Song M 2007 J. Mater. Chem. 17 3678
[45] Tian Y, Lu H B, Liao L, Li J C and Liu C 2009 Solid State Commun. 149 456
[46] Feng L B, Liu A H, Liu M, Ma Y Y, Wei J and Man B Y 2010 Mater. Charact. 61 128
[47] Obraztsov and Nat A N 2009 Nat. Nanotechnol. 4 212
[48] Li X, Zhao W F and Chen G H 2008 Mater. Rev. 22 48
[49] Stankovich S, Dikin D A, Piner R D, Kohlhaas K A, Kleinhammes A, Jia Y, Wu Y, Nguyen S T and Ruoff R S 2007 Carbon 45 1558
[50] Park S, An J, Jung I, Piner R D, An S J, Li X, Velamakanni A and Ruoff R S 2009 Nano Lett. 9 1593
[51] Wang H, Wang L, Qu C Q, Su Y D, Yu S S, Zheng W T and Liu Y C 2011 J. Solid State Chem. 184 881
[52] Nethravathi C and Rajamathi M 2008 Carbon 46 1994
[53] Matsuo Y, Miyabe T, Fukutsuka T and Sugie Y 2007 Carbon 45 1005
[1] Graphene/polyaniline composite sponge of three-dimensional porous network structure as supercapacitor electrode
Jiu-Xing Jiang(姜久兴), Xu-Zhi Zhang(张旭志), Zhen-Hua Wang(王振华), Jian-Jun Xu(许健君). Chin. Phys. B, 2016, 25(4): 048102.
[2] Synthesis and electrochemical properties of three-dimensional graphene/polyaniline composites for supercapacitor electrode materials
Zhao Wen, He Da-Wei, Wang Yong-Sheng, Du Xiang, Xin Hao. Chin. Phys. B, 2015, 24(4): 047204.
[3] Analysis of composite material interface crack face contact and friction effects using a new node-pairs contact algorithm
Zhong Zhi-Peng, He Yu-Bo, Wan Shui. Chin. Phys. B, 2014, 23(6): 064601.
[4] Fabrication and performance optimization of Mn–Zn ferrite/EP composites as microwave absorbing materials
Wang Wen-Jie, Zang Chong-Guang, Jiao Qing-Jie. Chin. Phys. B, 2013, 22(12): 128101.
[5] Carbon materials with quasi-graphene layers: the dielectric, percolation properties and the electronic transport mechanism
Lu Ming-Ming, Yuan Jie, Wen Bo, Liu Jia, Cao Wen-Qiang, Cao Mao-Sheng. Chin. Phys. B, 2013, 22(3): 037701.
[6] Investigation of the free volume and ionic conducting mechanism of poly(ethylene oxide)-LiClO4 polymeric electrolyte by positron annihilating lifetime spectroscopy
Gong Jing, Gong Zhen-Li, Yan Xiao-Li, Gao Shu, Zhang Zhong-Liang, Wang Bo. Chin. Phys. B, 2012, 21(10): 107803.
[7] Electric field distribution and effective nonlinear AC and DC responses of graded cylindrical composites
Ding Xia,Jia Yan-Xia,Wei En-Bo. Chin. Phys. B, 2012, 21(5): 057202.
[8] Effective AC response of nonlinear spherical coated composite
Hao Yan-Hua, ChenXiao-Gang, Hou Rui, Wang Rui. Chin. Phys. B, 2010, 19(6): 067202.
[9] Mg doping reduced full width at half maximum of the near-band-edge emission in Mg doped ZnO films
Long Xue, Li Xaing, Lin Peng-Ting, Cheng Xing-Wang, Liu Ying, Cao Chuan-Bao. Chin. Phys. B, 2010, 19(2): 027202.
[10] Comments on `Enhanced piezoresistivity in Ni-silicone rubber composites'
D. Bloor, A. Graham, P. J.Laughlin, D. Lussey. Chin. Phys. B, 2010, 19(1): 017001.
[11] Effective response of nonlinear cylindrical coated composites under external AC and DC electric field
Shen Yu-Yan, Chen Xiao-Gang, Cui Wei, Hao Yan-Hua, Li Qian-Qian. Chin. Phys. B, 2009, 18(2): 757-762.
[12] Enhanced piezoresistivity in Ni--silicone rubber composites
Chang Fang-Gao, Yang Feng, Wang Shao-Xiang, Zhang Na, Song Gui-Lin. Chin. Phys. B, 2009, 18(2): 652-657.
[13] Simultaneous observation of positive and negative giant magnetoresistances in composite (La0.83Sr0.17MnO3)1-x(ITO)x
Wang Miao, Zhang Ning. Chin. Phys. B, 2006, 15(4): 850-853.
[14] A theory of nonlinear AC response in coated composites
Wei En-Bo, Tian Ji-Wei, Song Jin-Bao. Chin. Phys. B, 2004, 13(3): 388-392.
[15] Effective nonlinear AC response to composite with spherical particles
Chen Xiao-Gang, Liang Fang-Chu, Wei En-Bo. Chin. Phys. B, 2005, 14(6): 1217-1222.
No Suggested Reading articles found!