Please wait a minute...
Chin. Phys. B, 2014, Vol. 23(12): 120305    DOI: 10.1088/1674-1056/23/12/120305
GENERAL Prev   Next  

Preparation of optimal entropy squeezing state of atomic qubit inside the cavity via two-photon process and manipulation of atomic qubit outside the cavity

Zhou Bing-Ju, Peng Zhao-Hui, Jia Chun-Xia, Jiang Chun-Lei, Liu Xiao-Juan
College of Physics and Electronic Science, Hunan University of Science and Technology, Xiangtan 411201, China
Abstract  Considering two atomic qubits initially in Bell states, we send one qubit into a vacuum cavity with two-photon resonance and leave the other one outside. Using quantum information entropy squeezing theory, the time evolutions of the entropy squeezing factor of the atomic qubit inside the cavity are discussed for two cases, i.e., before and after rotation and measurement of the atomic qubit outside the cavity. It is shown that the atomic qubit inside the cavity has no entropy squeezing phenomenon and is always in a decoherent state before the operating atomic qubit outside the cavity. However, the periodical entropy squeezing phenomenon emerges and the optimal entropy squeezing state can be prepared for the atomic qubit inside the cavity by adjusting the rotation angle, choosing the interaction time between the atomic qubit and the cavity, controlling the probability amplitudes of subsystem states. Its physical essence is cutting the entanglement between the atomic qubit and its environment, causing the atomic qubit inside the cavity to change from the initial decoherent state into maximum coherent superposition state, which is a possible way of recovering the coherence of a single atomic qubit in the noise environment.
Keywords:  atomic qubit      rotation operation      optimal entropy squeezing state      two-photon process  
Received:  15 May 2014      Revised:  13 June 2014      Accepted manuscript online: 
PACS:  03.65.Ud (Entanglement and quantum nonlocality)  
  03.67.-a (Quantum information)  
  42.50.Pq (Cavity quantum electrodynamics; micromasers)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11374096 and 11405052).
Corresponding Authors:  Liu Xiao-Juan     E-mail:  lxjdx1987@163.com

Cite this article: 

Zhou Bing-Ju, Peng Zhao-Hui, Jia Chun-Xia, Jiang Chun-Lei, Liu Xiao-Juan Preparation of optimal entropy squeezing state of atomic qubit inside the cavity via two-photon process and manipulation of atomic qubit outside the cavity 2014 Chin. Phys. B 23 120305

[24] Yang C P and Guo G C 1999 Phys. Lett. A 255 125
[1] Bennett C H and Divinvenzo D P 2000 Nature 404 247
[2] Meier F, Levy J and Lossl D 2003 Phys. Rev. Lett. 90 047901
[3] He Y and Jiang N Q 2010 Commun. Theor. Phys. 53 97
[4] Wu C F 2008 Frontier Science 2 92
[5] Long G L, Li Y S and Zhang W L 2000 Phys. Rev. A 61 0423051
[6] Zhang Y P, Tang N, Wang G Y and Zeng H S 2011 Chin. Phys. B 20 110301
[7] Li C X and Fang M F 2003 Chin. Phys. 12 294
[8] Liu T K 2006 Chin. J. Quantum Electron. 23 641
[9] Zhou B J, Liu X J, Zhou Q P and Liu M W 2007 Chin. Phys. 16 420
[10] Mao J M, Jiao Z Y and Li N 2008 Int. J. Theor. Phys. 47 1270
[11] Guo Y Q, Zhou L and Song H S 2005 Int. J. Theor. Phys. 44 1373
[12] Fang M F, Zhou P and Swain S 2000 J. Mod. Opt. 47 1043
[13] Fang M F, Zhou P and Swain S 2000 Chin. Phys. Lett. 17 885
[14] Mahmoud A A, Aballa M S and Obada A S F 2002 J. Opt. B 4 134
[15] Liu X J, Zhou B J, Liu M W and Li S C 2007 Chin. Phys. 16 3685
[16] Zou Y and Li Y P 2009 Chin. Phys. B 18 2794
[17] Liu X J, Zhou Y J and Fang M F 2009 Chin. Phys. B 18 2307
[18] Zhou B J, Liu Y M, Zhao M Z and Liu X J 2010 Chin. Phys. B 19 124207
[19] Fang M F and Liu X 2000 Acta Phys. Sin. 49 435 (in Chinese)
[20] Liu X J, Fang M F and Zhou Q P 2005 Acta Phys. Sin. 54 703 (in Chinese)
[21] Zeng K and Fang M F 2005 Chin. Phys. 14 2009
[22] Wang C Z and Fang M F 2002 Acta Phys. Sin. 51 1989 (in Chinese)
[23] Zhou B J, Liu X J, Zhan J and Zhou R L 2012 J. Commun. 33 177 (in Chinese)
[24] Yang C P and Guo G C 1999 Phys. Lett. A 255 125
[1] Scheme for implementing economical phase-covariant quantum cloning machine of distant atomic qubits with single-photon interference
Zhou Yan-Hui, Wang Lei, Lai Xiao-Lei. Chin. Phys. B, 2013, 22(5): 050305.
[2] Implementation of unambiguous comparison for unknown pure quantum states with cavity-assisted interaction
Cheng Liu-Yong, Wang Hong-Fu, Zhang Shou, Yeon Kyu-Hwang. Chin. Phys. B, 2013, 22(5): 050306.
[3] Preparation and control of atomic optimal entropy squeezing states for a moving two-level atom under control of the two-mode squeezing vacuum fields
Zhou Bing-Ju, Liu Yi-Man, Zhao Ming-Zhuo, Liu Xiao-Juan. Chin. Phys. B, 2010, 19(12): 124207.
[4] The remote implementation of all possible generalized quantum measurement on single atomic qubit in a quantum network
Han Yang, Wu Chun-Wang, Wu Wei, Chen Ping-Xing, Li Cheng-Zu. Chin. Phys. B, 2009, 18(8): 3215-3220.
[5] The entanglement of two dipole--dipole coupled atoms interacting with a thermal field via a two-photon process
Liao Xiang-Ping, Fang Mao-Fa, Cai Jian-Wu, Zheng Xiao-Juan. Chin. Phys. B, 2008, 17(6): 2137-2142.
[6] THE TWO-PHOTON DEGENERATE JAYNES-CUMMINGS MODEL WITH AND WITHOUT ROTATING-WAVE APPROXIMATION
Zhou Ling, Song He-shan, Yao Li. Chin. Phys. B, 2001, 10(5): 413-417.
No Suggested Reading articles found!