Please wait a minute...
Chin. Phys. B, 2013, Vol. 22(5): 050306    DOI: 10.1088/1674-1056/22/5/050306
GENERAL Prev   Next  

Implementation of unambiguous comparison for unknown pure quantum states with cavity-assisted interaction

Cheng Liu-Yong (程留永)a, Wang Hong-Fu (王洪福)b, Zhang Shou (张寿)a b, Yeon Kyu-Hwangc
a Center for the Condensed-Matter Science and Technology, Department of Physics, Harbin Institute of Technology, Harbin 150001, China;
b Department of Physics, College of Science, Yanbian University, Yanji 133002, China;
c BK21 Program Physics & Department of Physics, College of Natural Science, Chungbuk National University,Cheonju, Chungbuk 361-763, Republic of Korea
Abstract  We propose two effective schemes for local and remote unknown atomic state comparisons with cavity-assisted single photon input-output process without any initial entanglement or auxiliary resource. And the unambiguous state discrimination is considered using the state comparison process as the basic module. All the implementation schemes here just involve common quantum logic gates and the single qubit measurement. The analysis shows that our schemes are feasible under the current experimental conditions.
Keywords:  unambiguous state comparison      atomic qubit      cavity-assisted interaction  
Received:  07 September 2012      Revised:  13 November 2012      Accepted manuscript online: 
PACS:  03.67.-a (Quantum information)  
  42.50.Dv (Quantum state engineering and measurements)  
  42.50.Pq (Cavity quantum electrodynamics; micromasers)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 61068001 and 11264042), the China Postdoctoral Science Foundation (Grant No. 2012M520612), and the Talent Program of Yanbian University of China (Grant No. 950010001).
Corresponding Authors:  Zhang Shou     E-mail:

Cite this article: 

Cheng Liu-Yong (程留永), Wang Hong-Fu (王洪福), Zhang Shou (张寿), Yeon Kyu-Hwang Implementation of unambiguous comparison for unknown pure quantum states with cavity-assisted interaction 2013 Chin. Phys. B 22 050306

[1] Nielsen M A and Chuang I L 2000 Quantum Computation and Quantum Information (Cambridge: Cambridge University Press)
[2] Bennett C H 1992 Phys. Rev. Lett. 68 3121
[3] Buhrman H, Cleve R, Watrous J and Wolf R de 2001 Phys. Rev. Lett. 87 167902
[4] Ivanovic I D 1987 Phys. Lett. A 123 257
[5] Dieks D 1988 Phys. Lett. A 126 303
[6] Peres A 1988 Phys. Lett. A 128 19
[7] Jaeger G and Shimony A 1995 Phys. Lett. A 197 83
[8] Helstrom C W 1976 Quantum Detection and Estimation Theory (New York: Academic Press)
[9] Croke S, Andersson E, Barnett S M, Gilson C R and Jeffers J 2006 Phys. Rev. Lett. 96 070401
[10] Chefles A and Barnett S M 1998 Phys. Lett. A 250 223
[11] Rudolph T, Spekkens R W and Turner P S 2003 Phys. Rev. A 68 010301
[12] Bergou J A, Feldman E and Hillery M 2006 Phys. Rev. A 73 032107
[13] Chen L B, Jin R B and Lu H 2008 Chin. Phys. B 17 778
[14] Pang S and Wu S 2009 Phys. Rev. A 80 052320
[15] Bergou J A and Hillery M 2005 Phys. Rev. Lett. 94 160501
[16] Probst-Schendzielorz S T, Wolf A, Freyberger M, Jex I, He B and Bergou J A 2007 Phys. Rev. A 75 052116
[17] He B, Bergou J A and Ren Y 2007 Phys. Rev. A 76 032301
[18] Wu X and Gong Y 2008 Phys. Rev. A 78 042315
[19] Herzog U and Bergou J A 2008 Phys. Rev. A 78 032320
[20] Wu X, Yu S and Zhou T 2009 Phys. Rev. A 79 052302
[21] Barnett S M, Chefles A and Jex I 2003 Phys. Lett. A 307 189
[22] Chefles A, Andersson E and Jex I 2004 J. Phys. A 37 7315
[23] Kleinmann M, Kampermann H and Bruβ D 2005 Phys. Rev. A 72 032308
[24] Sedlk M, Ziman M, Bud V and Hillery M 2008 Phys. Rev. A 77 042304
[25] Bergou J A and Orszag M 2007 J. Opt. Soc. Am. B 24 384
[26] Lin Q 2009 Chin. Phys. B 18 51
[27] Walther H, Varcoe B T H, Englert B G and Becker T 2006 Rep. Prog. Phys. 69 1325
[28] Sauer J A, Fortier K M, Chang M S, Hamley C D and Chapman M S 2004 Phys. Rev. A 69 051804
[29] Dayan B, Parkins A S, Aoki T, Ostby E P, Vahala K I and Kimble H J 2008 Science 319 1062
[30] An J H, Feng M and Oh C H 2009 Phys. Rev. A 79 032303
[31] Chen Q and Feng M 2009 Phys. Rev. A 79 064304
[32] Pan G Z, Yang M and Cao Z L 2009 Chin. Phys. B 18 2319
[33] Song J, Xia Y and Song H S 2009 Europhys. Lett. 87 50005
[34] Hijlkema M, Weber B, Specht H P, Webster S C, Kuhn A and Rempe G 2007 Nat. Phys. 3 253
[35] Shields A J 2007 Nat. Photon. 1 215
[36] Wang B and Duan L M 2005 Phys. Rev. A 72 022320
[37] Xue P and Xiao Y F 2006 Phys. Rev. Lett. 97 140501
[38] Huang X H, Lin X M, Lin G W, Chen Z H and Tang Y X 2008 Chin. Phys. B 17 4382
[39] Mei F, Yu Y F, Feng X L, Zhang Z M and Oh C H 2010 Phys. Rev. A 82 052315
[1] Preparation of optimal entropy squeezing state of atomic qubit inside the cavity via two-photon process and manipulation of atomic qubit outside the cavity
Zhou Bing-Ju (周并举), Peng Zhao-Hui (彭朝晖), Jia Chun-Xia (贾春霞), Jiang Chun-Lei (姜春蕾), Liu Xiao-Juan (刘小娟). Chin. Phys. B, 2014, 23(12): 120305.
[2] Scheme for implementing economical phase-covariant quantum cloning machine of distant atomic qubits with single-photon interference
Zhou Yan-Hui (周彦辉), Wang Lei (王磊), Lai Xiao-Lei (赖晓磊). Chin. Phys. B, 2013, 22(5): 050305.
[3] The remote implementation of all possible generalized quantum measurement on single atomic qubit in a quantum network
Han Yang(韩阳), Wu Chun-Wang(吴春旺), Wu Wei(吴伟), Chen Ping-Xing(陈平形), and Li Cheng-Zu(李承祖). Chin. Phys. B, 2009, 18(8): 3215-3220.
No Suggested Reading articles found!