Please wait a minute...
Chin. Phys. B, 2013, Vol. 22(3): 034205    DOI: 10.1088/1674-1056/22/3/034205
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

Impacts of higher-order dispersions and saturable nonlinearities on modulation instability in negative-refractive metamaterials

Zhong Xian-Qiong, Cheng Ke, Xiang An-Ping
College of Optoelectronic Technology, Chengdu University of Information Technology, Chengdu 610225, China
Abstract  On the basis of the standard linear stability analysis and Drude electromagnetic model, the impacts of higher-order dispersions and three kinds of typical saturable nonlinearities on modulation instability (MI) have been analyzed and calculated for negative-refractive metamaterials (MMs). Our results show that the MI gain spectra consist of only one spectral region instead of one or two regions in ordinary materials, which may be close to or far from the zero point. Particularly, the spectrum far from the zero point has a high cut-off frequency but a narrow spectral width, which is obviously beneficial to the generation of high-repetition-rate pulse trains. Moreover, MI characteristics here will vary with the normalized angular frequency which can be modified by adjusting the structures of negative-refractive MMs, signifying the controllability of bistable solitons and MI based applications. The effects of saturable nonlinearities are similar to those in ordinary materials.
Keywords:  modulation instability (MI)      negative-refractive metamaterial (MM)      saturable nonlinearity      higher-order dispersion  
Received:  21 July 2012      Revised:  18 September 2012      Published:  01 February 2013
PACS:  42.65.Sf (Dynamics of nonlinear optical systems; optical instabilities, optical chaos and complexity, and optical spatio-temporal dynamics)  
  42.65.Tg (Optical solitons; nonlinear guided waves)  
  42.70.Nq (Other nonlinear optical materials; photorefractive and semiconductor materials)  
Fund: Project supported by the National Key Technology Research and Development Program of the Ministry of Science and Technology of China (Grant No. 210186) and the Scientific Research Foundation of Chengdu University of Information Technology, China (Grant Nos. 2010d1 and J201117).
Corresponding Authors:  Zhong Xian-Qiong     E-mail:  zxqlxh@yeah.net

Cite this article: 

Zhong Xian-Qiong, Cheng Ke, Xiang An-Ping Impacts of higher-order dispersions and saturable nonlinearities on modulation instability in negative-refractive metamaterials 2013 Chin. Phys. B 22 034205

[1] Cui W N, Zhu Y Y, Li H X and Liu S M 2009 Phys. Lett. A 374 380
[2] Xiang Y J, Dai X Y, Wen S C and Fan D Y 2011 J. Opt. Soc. Am. B 28 908
[3] Maluckov A, Hadzievski L, Lazarides N and Tsironis G P 2008 Phys. Rev. E 77 046607
[4] Dai X Y, Wen S C and Xiang Y J 2008 Acta Phys. Sin. 57 186 (in Chinese)
[5] Wen S C, Xiang Y J, Su W H, Hu Y H, Fu X Q and Fan D Y 2006 Opt. Express 14 1568
[6] Demircan A and Bandelow U 2006 Appl. Phys. B 86 31
[7] Zhong X Q and Xiang A P 2010 Chin. Phys. Lett. 27 014203
[8] Alexander M, Rubenchik M, Turitsyn K and Fedoruk M P 2010 Opt. Exptress 18 1380
[9] Choudhuri A and Porsezian K 2012 Phys. Rev. A 85 033820
[10] Wen S C, Su W H, Zhang H, Fu X Q, Qian L J and Fan D Y 2003 Chin. Phys. Lett. 20 852
[11] Cheng W, Meng Z and Zhou H J 2012 Chin. Phys. B 21 094215
[12] Abdullaev F Kh, Darmanyan S A, Bischoff S, Christiansen P L and Sorensen M P 1994 Opt. Commun. 108 60
[13] Zhong X Q and Xiang A P 2010 Chin. Phys. B 19 064212
[14] Dinda P and Porsezian K 2010 J. Opt. Soc. Am. B: Opt. Phys. 27 1143
[15] Hickmann J M, Cavalcanti S B, Borges N M, Gouveia E A and Gouveia-Neto A S 1993 Opt. Lett. 18 182
[16] Lyra M L and Gouveia-Neto A S 1994 Opt. Commun. 108 117
[17] Amarendra K S and Manirupa S 2011 J. Opt. Soc. Am. B: Opt. Phys. 28 944
[18] Kourakis I and Shukla P K 2005 Phys. Rev. E 72 016626
[19] Wen S C, Wang Y W, Su W H, Xiang Y J, Fu X Q and Fan D Y 2006 Phys. Rev. E 73 036617
[20] Xiang Y J, Wen S C, Dai X Y, Tang Z X, Su W H and Fan D Y 2007 J. Opt. Soc. Am. B: Opt. Phys. 24 3058
[21] Zhong X Q, Tang T T, Xiang A P and Cheng K 2011 Opt. Commun. 284 4727
[22] Pendry J B 2000 Phys. Rev. Lett. 85 3966
[23] Zhou W, Su W H, Cheng X, Xiang Y J, Dai X Y and Wen S C 2009 Opt. Commun. 282 1440
[1] Exact solitary wave solutions of a nonlinear Schrödinger equation model with saturable-like nonlinearities governing modulated waves in a discrete electrical lattice
Serge Bruno Yamgoué, Guy Roger Deffo, Eric Tala-Tebue, François Beceau Pelap. Chin. Phys. B, 2018, 27(12): 126303.
[2] Spatial solitons in photonic lattices with large-scale defects
Yang Xiao-Yu, Zheng Jiang-Bo, Dong Liang-Wei. Chin. Phys. B, 2011, 20(3): 034208.
[3] Cross-phase modulation instability in optical fibres with exponential saturable nonlinearity and high-order dispersion
Zhong Xian-Qiong, Xiang An-Ping. Chin. Phys. B, 2010, 19(6): 064212.
[4] Higher-order effects on self-similar parabolic pulse in the microstructured fibre amplifier
Liu Wei-Ci, Xu Wen-Cheng, Feng Jie, Chen Wei-Cheng, Li Shu-Xian, Liu Song-Hao. Chin. Phys. B, 2008, 17(3): 1025-1028.
[5] Propagation of bright femtosecond pulses in a nonlinear optical fibre with the third- and fourth-order dispersions
Ao Sheng-Mei, Yan Jia-Ren, Yu Hui-You. Chin. Phys. B, 2007, 16(6): 1526-1533.
No Suggested Reading articles found!