Please wait a minute...
Chin. Phys. B, 2012, Vol. 21(8): 086104    DOI: 10.1088/1674-1056/21/8/086104
CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES Prev   Next  

High volumetric hydrogen density phases of magnesium borohydride at high-pressure: A first-principles study

Fan Jing (范靖), Bao Kuo (包括), Duan De-Fang (段德芳), Wang Lian-Cheng (汪连城), Liu Bing-Bing (刘冰冰), Cui Tian (崔田)
State Key Laboratory of Superhard Materials, College of Physics, Jilin University, Changchun 130012, China
Abstract  The previously proposed theoretical and experimental structures, bond characterization, and compressibility of Mg(BH4)2 in a pressure range from 0 to 10 GPa are studied by ab initio density-functional calculations. It is found that the ambient pressure phases of meta-stable I41/amd and unstable P-3m1 proposed recently are extra stable and cannot decompose under high pressure. Enthalpy calculation indicates that the ground state of F222 structure proposed by Zhou et al. [2009 Phys. Rev. B 79 212102] will transfer to I41/amd at 0.7 GPa, and then to P-3m1 structure at 6.3 GPa. And the experimental P6122 structure (α-phase) transfers to I41/amd at 1.2 GPa. Furthermore, both I41/amd and P-3m1 can exist as high volumetric hydrogen density phases at low pressure. Their theoretical volumetric hydrogen densities reach 146.351 g H2/L and 134.028 g H2/L at ambient pressure respectively. The calculated phonon dispersion curve shows that the I41/amd phase is dynamically stable in a pressure range from 0 to 4 GPa and the P-3m1 phase is stable at pressures higher than 1 GPa. So the I41/amd phase may be synthesized under high pressure and retained to ambient pressure. Energy band structures show that both of them are always ionic crystalline and insulating with a band gap of about 5 eV in this pressure range. In addition, they each have an anisotropic compressibility. The c axis of these structures is easy to compress. Especially, the c axis and volume of P-3m1 phase are extraordinarily compressible, showing that compressing alone c axis can increase the volumetric hydrogen content for both I41/amd and P-3m1 structures.
Keywords:  hydrogen storage material      metal borohydride      thermodynamic stability      dynamical stability  
Received:  12 December 2011      Revised:  26 January 2012      Accepted manuscript online: 
PACS:  61.50.Ks (Crystallographic aspects of phase transformations; pressure effects)  
  62.50.-p (High-pressure effects in solids and liquids)  
  63.20.D- (Phonon states and bands, normal modes, and phonon dispersion)  
  71.20.-b (Electron density of states and band structure of crystalline solids)  
Fund: Project supported by the National Basic Research Program of China (Grant No. 2011CB808200), the National Natural Science Foundation of China (Grant Nos. 51032001, 11074090, 10979001, and 51025206), and the Funds for Changjiang Scholar and Innovative Research Team in University (Grant No. IRT1132).
Corresponding Authors:  Cui Tian     E-mail:  cuitian@jlu.edu.com

Cite this article: 

Fan Jing (范靖), Bao Kuo (包括), Duan De-Fang (段德芳), Wang Lian-Cheng (汪连城), Liu Bing-Bing (刘冰冰), Cui Tian (崔田) High volumetric hydrogen density phases of magnesium borohydride at high-pressure: A first-principles study 2012 Chin. Phys. B 21 086104

[1] Schlapbach L and Züttel A 2001 Nature 414 353
[2] David E 2005 J. Mater. Process. Technol. 162 169
[3] Lodziana Z and Vegge T 2004 Phys. Rev. Lett. 93 145501
[4] Ravindran P, Vajeeston P, Fjellvåg H and Kjekshus A 2004 Comput. Mater. Sci. 30 349
[5] Vajeeston P, Ravindran P, Vidya R, Fjellvåg H and Kjekshus A 2003 Appl. Phys. Lett. 82 2257
[6] Vajeeston P, Ravindran P, Vidya R, Fjellvåg H and Kjekshusl A 2003 Phys. Rev. B 68 212101
[7] Talyzin A V and Sundqvist B 2004 Phys. Rev. B 70 180101
[8] Zhang H, Xiao M Z, Zhang G Y, Lu G X and Zhu S L 2011 Acta Phys. Sin. 60 026103 (in Chinese)
[9] Wu D L, Xie A D, Wan H J and Ruan W 2011 Acta Phys. Sin. 60 103101 (in Chinese)
[10] Ye X Q, Luo D L, Sang G and Ao B Y 2011 Chin. Phys. B 20 017102
[11] Liu G L, Zhang G Y, Zhang H and Zhu S L 2011 Chin. Phys. B 20 038801
[12] Ruan W, Xie A D, Yu X G and Wu D L 2011 Chin. Phys. B 20 043104
[13] Her J H, Stephens P W, Gao Y, Soloveichik G L, Rijssenbeek J, Andrus M and Zhao J C 2007 Acta Crystallogr. Sect. B 63 561
[14] Cerńy R, Filinchuk Y, Hagemann H and Yvon K 2007 Angew. Chem. 119 5867
[15] Nakamori Y, Miwa K, Ninomiya A, Li H, Ohba N, Towata S, Züttel A and Orimo S I 2006 Phys. Rev. B 74 045126
[16] Vajeeston P, Ravindran P, Kjekshus A and Fjellvåg H 2006 Appl. Phys. Lett. 89 071906
[17] Ozolins V, Majzoub E H and Wolverton C 2008 Phys. Rev. Lett. 100 135501
[18] Voss J, Hummelshoj J S, Lodziana Z and Vegge T 2009 J. Phys.: Condens. Matter 21 012203
[19] Zhou X F, Qian Q R, Zhou J, Xu B, Tian Y J and Wang H T 2009 Phys. Rev. B 79 212102
[20] Dai B, Sholl D S and Johnson J K 2008 J. Phys. Chem. C 112 4391
[21] Caputo R, Tekin A, Sikora W and Züttel A 2009 Chem. Phys. Lett. 480 203
[22] Li H W, Kikuchi K, Nakamori Y, Miwa K, Towata S and Orimo S I 2007 Scr. Mater. 57 679
[23] Pinkerton F E, Meyer M S, Meisner G P and Balogh M P 2007 J. Alloys Compd. 433 282
[24] Chlopek K, Frommen C, Leon A, Zabara O and Fichtner M 2007 J. Mater. Chem. 17 3496
[25] Chellappa R S, Chandra D, Gramsch S A, Hemley R J, Lin J F and Song Y 2006 J. Phys. Chem. B 110 11088
[26] Chellappa R S, Chandra D, Somayazulu M, Gramsch S A and Hemley R J 2007 J. Phys. Chem. B 111 10785
[27] George L, Drozd V and Saxena S K 2009 J. Phys. Chem. C 113 486
[28] Segall M, Lindan P, Probert M, Pickard C, Hasnip P, Clark S and Payne M 2002 J. Phys.: Condens. Matter 14 2717
[29] Fischer T H and Almlof J 1992 J. Phys. Chem. 96 9768
[30] Perdew J P, Burke K and Ernzerhof M 1996 Phys. Rev. Lett. 77 3865
[31] Monkhorst H J and Pack J D 1976 Phys. Rev. B 13 5188
[32] Computer code PHONON, Kraków, Poland, 2004
[33] Parlinski K, Li Z Q and Kawazoe Y 1997 Phys. Rev. Lett. 78 4063
[34] Riktor M D, Sorby M H, Chlopek K, Fichtner M, Buchter F, Züttel A and Hauback B C 2007 J. Mater. Chem. 17 4939
[35] Kim E, Kumar R, Weck P F, Cornelius A L, Nicol M, Vogel S C, Zhang J Z, Hartl M, Stowe A C, Daemen L and Zhao Y S 2007 J. Phys. Chem. B 111 13873
[36] Miwa K, Aoki M, Noritake T, Ohba N, Nakamori N, Towata S, Züttel A and Orimo S 2006 Phys. Rev. B 74 155122
[37] Matsunaga T, Buchter F, Mauron P, Bielman A, Nakamori Y, Orimo S, Ohba N, Miwa K, Towata S and Züttel A 2008 J. Alloys Compd. 459 583
[38] Hanada N, Chlopek K, Frommen C, Lohstroh W and Fichtner M 2008 J. Mater. Chem. 18 2611
[39] Hwang S J, Bowman R C, Reiter J W, Rijssenbeek J, Soloveichik G L, Zhao J C, Kabbour H and Ahn C C 2008 J. Phys. Chem. C 112 3164
[40] Li H W, Kikuchi K, Nakamori Y, Ohba N, Miwa K, Towata S and Orimo S Acta Mater. 56 1342
[41] Li H W, Miwa K, Ohba N, Fujita T, Sato T, Yan Y, Towata S, Chen W W and Orimo S 2009 Nanotechnology 20 204013
[42] Li H W, Kikuchi K, Sato T, Nakamori Y, Ohba N, Aoki M, Miwa K, Towata I and Orimo S 2008 Mater. Trans. 49 2224
[43] Ozolins V, Majzoub E H and Wolverton C 2009 J. Am. Chem. Soc. 131 230
[44] Soloveichik G L, Gao Y, Rijssenbeek J, Andrus M, Kniajanski S, Bowman R C, Hwang S and Zhao J 2009 Int. J. Hydrogen Energy 34 916
[45] Ozolins V, Majzoub E H and Wolverton C 2009 J. Am. Chem. Soc. 131 230
[46] Will G and Kiefer B 2001 Z. Anorg. Allg. Chem. 627 2100
[47] Oganov A R, Chen J H, Gatti C, Ma Y Z, Ma Y M, Glass C W, Liu Z X, Yu T, Kurakevych O O and Solozhenko V L 2009 Nature 457 863
[48] Moriwaki T, Akahama Y and Kawamura H 2006 J. Phys. Soc. Jpn. 75 074603
[49] Huebschle C B, Messerschmidt M, Lentz D and Luger P 2004 Z. Anorg. Allg. Chem. 630 1313
[50] Pickard C J and Needs R J 2007 Nat. Phys. 3 473
[51] Born M and Huang K 1956 Dynamical Theory of Crystal Lattices (Oxford: Clarendon)
[52] Haines J, Léger J M and Bocquillon G 2001 Ann. Rev. Mater. Res. 31 1
[53] Watt J P 1979 J. Appl. Phys. 50 6290
[54] Watt J P and Peselnick L 1980 J. Appl. Phys. 51 1525
[55] Watt J P 1980 J. Appl. Phys. 51 1520
[56] Wu Z J, Zhao E J, Xiang H P, Hao X F, Liu X J and Meng J 2007 Phys. Rev. B 76 054115
[1] Electronic and thermoelectric properties of alkali metal-based perovskites CsYbF3 and RbYbF3
Q Mahmood, N A Noor, T Ghrib, Nessrin A Kattan, Asif Mahmood, and Shahid M Ramay. Chin. Phys. B, 2020, 29(11): 117305.
[2] Quantized vortices in spinor Bose–Einstein condensates with time–space modulated interactions and stability analysis
Yu-Qin Yao(姚玉芹)† and Ji Li(李吉). Chin. Phys. B, 2020, 29(10): 103701.
[3] Structural, electronic, elastic, and thermal properties of CaNiH3 perovskite obtained from first-principles calculations
S Benlamari, H Bendjeddou, R Boulechfar, S Amara Korba, H Meradji, R Ahmed, S Ghemid, R Khenata, S Bin Omran. Chin. Phys. B, 2018, 27(3): 037104.
[4] Electronic structures and thermodynamic stabilities of aluminum-based deuterides from first principles calculations
Ye Xiao-Qiu(叶小球), Luo De-Li(罗德礼), Sang Ge(桑革), and Ao Bing-Yun(敖冰云). Chin. Phys. B, 2011, 20(1): 017102.
[5] Thermodynamic stability of interacting fermions system with matrix eigenvalue method
Qin Fang(覃昉) and Chen Ji-Sheng(陈继胜). Chin. Phys. B, 2009, 18(7): 2654-2658.
[6] Density functional theory study on LaNi4.5 Al0.5 hydride phase: electronic properties and sites occupation
Chen Dong(陈东), Yu Ben-Hai(余本海), Wang Chun-Lei(王春雷), and Gao Tao(高涛). Chin. Phys. B, 2007, 16(7): 2056-2061.
No Suggested Reading articles found!