Please wait a minute...
Chin. Phys. B, 2012, Vol. 21(12): 127103    DOI: 10.1088/1674-1056/21/12/127103
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

First-principles calculations on the elastic and thermodynamic properties of NbN

Ren Da-Hua, Cheng Xin-Lu
Institute of Atomic and Molecular Physics, Sichuan University, Chengdu 610065, China
Abstract  The elastic and thermodynamic properties of NbN at high pressures and high temperatures are investigated by the plane-wave pseudopotential density functional theory (DFT). The generalized gradient approximation (GGA) with Perdew-Burke-Ernzerhof (PBE) method is used to describe the exchange-correlation energy in the present work. The calculated equilibrium lattice constant a0, bulk modulus B0, and the pressure derivative of bulk modulus B0' of NbN with rocksalt structure are in good agreement with numerous experimental and theoretical data. The elastic properties over a range of pressures from 0 to 80.4 GPa are obtained. Isotropic wave velocities and anisotropic elasticity of NbN are studied in detail. It is indicated that NbN is highly anisotropic in both longitudinal and shear-wave velocities. According to the quasi-harmonic Debye model, in which the phononic effect is considered, the relations of (V-V0)/V0 to the temperature and the pressure, and the relations of the heat capacity CV and the thermal expansion coefficient α to temperature are discussed in a pressure range from 0 to 80.4 GPa and a temperature range from 0 to 2500 K. At low temperature, CV is proportional to T3 and tends to the Dulong-Petit limit at higher temperature. We predict that the thermal expansion coefficient α of NbN is about 4.20×10-6/K at 300 K and 0 GPa.
Keywords:  NbN density functional theory      quasi-harmonic Debye model      elastic constants thermodynamic properties  
Received:  12 April 2012      Revised:  16 May 2012      Accepted manuscript online: 
PACS:  71.15.Mb (Density functional theory, local density approximation, gradient and other corrections)  
  62.20.de (Elastic moduli)  
  67.25.bd (Thermodynamic properties)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 11176020).
Corresponding Authors:  Cheng Xin-Lu     E-mail:  chengxl@scu.edu.cn

Cite this article: 

Ren Da-Hua, Cheng Xin-Lu First-principles calculations on the elastic and thermodynamic properties of NbN 2012 Chin. Phys. B 21 127103

[1] Toth L E 1971 Transition Metal Carbides and Nitrides (New York: Academic Press)
[2] Chhowalla M and Unalan H E 2005 Nat. Mater. 4 317
[3] McMillan P F 2002 Nat. Mater. 1 19
[4] Zerr A, Miehe G and Riedel R 2003 Nat. Mater. 2 185
[5] Jhi S H, Ihm J, Louie S G and Cohen M L 1999 Nature 399 132
[6] Chen X J, Struzhkin V V, Wu Z G, Somayazulu M, Qian J, Kung S, Christense A N, Zhao Y S, Cohen R E, Mao H K and Hemley R J 2005 PNAS 102 3198
[7] Wu Z G, Chen X J, Struzhkin V V and Cohen R E 2005 Phys. Rev. B 71 214103
[8] Chen Z W, Gu M X, Sun C Q, Zhang X Y and Liu R P 2007 Appl. Phys. Lett. 91 061905
[9] Jhi S H, Louie S G, Cohen M L and Morris J W Jr 2001 Phys. Rev. Lett. 87 075503
[10] Zhang R F, Sheng S H and Veprek S 2007 Appl. Phys. Lett. 91 031906
[11] Zhang R F, Sheng S H and Veprek S 2007 Appl. Phys. Lett. 90 191903
[12] Liao T, Wang J Y and Zhou Y C 2006 Phys. Rev. B 73 214109
[13] Amriou T, Bouhafs B, Aourag H, Khelifa B, Bresson S and Mathieu C 2003 Physica B 325 46
[14] Wang C, Wen M, Su Y D, Xu L, Qu C Q, Zhang Y J, Qiao L, Yu S S, Zheng W T and Jiang Q 2009 Solid State Commun. 149 725
[15] Wang Z, Terai H, Kawakami A and Uzawa Y 1999 Appl. Phys. Lett. 75 701
[16] Suzuki K, Miki S, Wang Z, Kobayashi Y, Shiki S and Ohkubo M 2008 J. Low Temp. Phys. 151 766
[17] Blanco M A, Francisico E and Luaña V 2004 Comput. Phys. Commun. 158 57
[18] Vanderbilt D 1990 Phys. Rev. B 41 7892
[19] Perdew J P, Burke K and Ernzerhof M 1996 Phys. Rev. Lett. 77 3865
[20] Pack J D and Monkhorst H J 1977 Phys. Rev. B 16 1748
[21] Segall M D, Lindan P J D, Probert M J, Pickard C J, Hasnip P J, Clark S J and Payne M C 2002 J. Phys.: Condens. Matter 14 2717
[22] Milman V, Winkler B, White J A, Packard C J, Payne M C, Akhmatskaya E V and Nobes R H 2000 Int. J. Quantum Chem. 77 895.
[23] Birch E D 1986 J. Geophys. Res. 91 4949
[24] Isaev E I, Simak S I, Abrikosov I A, Ahuja R, Vekilov Yu Kh, Katsnelson M I, Lichtenstein A I and Johansson B 2007 J. Appl. Phys. 101 123519
[25] Villars P and Calvet L D 1985 Pearson's Handbook of Crystallographic Data for Intermetallic Phases(Metals Park, OH: American Society for Metals)
[26] Stampfl C, Mannstadt W, Asahi R and Freeman A J 2001 Phys. Rev. B 63 155106
[27] Grossman J C, Mizel A, Côté M, Cohen M L and Louie S G 1999 Phys. Rev. B 60 6343
[28] Guillermet A F, Häglund J and Grimvall G 1993 Phys. Rev. B 48 11673
[29] Guillermet A F, Häglund J and Grimvall G 1992 Phys. Rev. B 45 11557
[30] Häglund J, Grimvall G, Jarborg T and Guillermet A F 1991 Phys. Rev. B 43 14400
[31] Hart G L W and Klein B M 2000 Phys. Rev. B 61 3151
[32] Kim J O, Achenbach J D, Mirkarimi P B, Shinn M and Barnett S A 1992 J. Appl. Phys. 72 1805
[33] Chen X J, Struzhkin V V, Wu Z G, Somayazulu M, Qian J, Kung S, Christensen A N, Zhao Y S, Cohen R E, Mao H K and Hemley R J 2005 Proc. Natl. Acad. Sci. USA 102 3198
[34] Alfonso J E, Buitrago J, Torres J, Marco J F and Santos B 2010 J. Mater. Sci. 45 5528
[35] Nye J F 1985 Physical Properties of Crystals (Oxford: Clarendon) p. 329
[36] Wentzcovitch R M, Ross N L and Price G D 1995 Physics of Earth and Planetary Interiors 90 101
[37] Sin'ko G V and Smirnow N A 2002 J. Phys.: Condens. Matter 14 6989
[38] Callenås A, Johansson L I, Christensen A N, Schwarz K and Blaha P 1985 Phys. Rev. B 32 575
[39] Zha C S, Mao J K and Hemley R J 2000 Proc. Natl. Acad. Sci. USA 97 13494
[40] Wang J H, Li J, Yip S, Phillpot S and Wolf D 1995 Phys. Rev. B 52 12627
[41] Schreiber E, Anderson O L and Soga N 1973 Elastic Constants and Their Measurements (New York: McGraw-Hill)
[42] Lu L Y, Cheng Y, Chen X R and Zhu J 2005 Physica B 370 236
[43] Anderson O L 1963 J. Phys. Chem. Solids 24 909
[44] Landau L D and Lifschitz E M 1980 Theory of Elasticity, Course of Theoretical Physics (New York: Pergamon Press)
[45] Maradudin A A, Montroll E W, Weiss G H and Ipatova I P 1971 Theory of Lattice Dynamics in the Harmonic Approximation (New York: Academic Press)
[46] Blanco M A, Pendás A M, Francisco E, Recio J M and Franco R 1996 J. Mol. Struct. 368 245
[47] Flórez M, Recio J M, Francisco E, Blanco M A and Pendás A M 2002 Phys. Rev. B 66 144112
[48] Francisco E, Recio J M, Blanco M A and Pendás A M 1998 J. Phys. Chem. 102 1595
[49] Francisco E, Blanco M A and Sanjurjo G 2001 Phys. Rev. B 63 094107
[50] Poirier J P 2000 Introduction to the Physics of the Earth's Interior (Oxford: Cambridge University Press) p. 11
[51] Wentzcovitch R M, Chang K J and Cohen M L 1986 Phys. Rev. B 34 1071
[52] Yu J X, Fu M, Ji G F and Chen X R 2009 Chin. Phys. B 18 2690
[53] Cheng Y, Lu L Y, Jia O H and Chen X R 2008 Chin. Phys. B 17 1355
[54] Chen D, Chen J D, Zhao L H, Wang C L, Yu B H and Shi D H 2009 Chin. Phys. B 18 738
[55] Zhang Z J, Wang F, Zheng Z, Wang J J, An X Y, Liao G and Ren W Y 2010 Physica B 406 737
[56] Zhai H C, Li X F, Du J Y and Ji G F 2012 Chin. Phys. B 21 057102
[57] Einstein A and Ann 1907 Ann. Phys. 22 180
[58] Nernst W, Lindemann A F, Elektrochem Z and Angew 1977 Phys. Chem. 17 817
[59] Petit A T and Dulong P L 1819 Ann. Chim. Phys. 10 395
[1] Mechanical and thermodynamic properties of cubic YH2 under high pressure:Prediction from first-principles study
Li Zhen-Li, Cheng Xin-Lu. Chin. Phys. B, 2014, 23(4): 046201.
[2] First principle calculation of elastic and thermodynamic properties of stishovite
Liu Xun(刘勋), Zhou Xian-Ming(周显明), and Zeng Zhao-Yi(曾召益). Chin. Phys. B, 2010, 19(12): 127103.
[3] Thermoelasticity of CaO from first principles
Liu Zi-Jiang(刘子江), Qi Jian-Hong(祁建宏), Guo Yuan(郭 媛), Chen Qi-Feng(陈其峰), Cai Ling-Cang(蔡灵仓), and Yang Xiang-Dong(杨向东). Chin. Phys. B, 2007, 16(2): 499-505.
No Suggested Reading articles found!