Please wait a minute...
Chin. Phys. B, 2010, Vol. 19(9): 090509    DOI: 10.1088/1674-1056/19/9/090509
GENERAL Prev   Next  

A new fractal algorithm to model discrete sequences

Heidi Kuzumaa, James W. Rectorb, Zhai Ming-Yuec
a Department of Civil Engineering, University of California, Berkeley 94530, USA; b Lawrence Berkeley Laboratory, Berkeley 94530, USA; c School of EE Engineering, North China Electric Power University, Beijing 102206, China
Abstract  Employing the properties of the affine mappings, a very novel fractal model scheme based on the iterative function system is proposed. We obtain the vertical scaling factors by a set of the middle points in each affine transform, solving the difficulty in determining the vertical scaling factors, one of the most difficult challenges faced by the fractal interpolation. The proposed method is carried out by interpolating the known attractor and the real discrete sequences from seismic data. The results show that a great accuracy in reconstruction of the known attractor and seismic profile is found, leading to a significant improvement over other fractal interpolation schemes.
Keywords:  the vertical scaling factors      seismic data      fractal interpolation      iterative function system     
Received:  22 October 2009      Published:  15 September 2010
PACS:  0555  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 60972004 and 60402004).

Cite this article: 

Zhai Ming-Yue, Heidi Kuzuma, James W. Rector A new fractal algorithm to model discrete sequences 2010 Chin. Phys. B 19 090509

[1] Mandelbrot B 1982 The Fractal Geometry of Nature (San Francisco: W. H. Freeman and Co.) p31--60
[2] Mazel D S and Hayes M H 1992 IEEE Trans. Signal Proc. 40 1724
[3] Unser M and Thierry Blu 2007 IEEE Trans. Signal Proc. 55 1352
[4] Unser M and Thierry Blu 2007 IEEE Trans. Signal Proc. 55 1364
[5] Zhu X, Cheng B and Titterington D M 1994 IEE Proc-VIS Image Sign. Proc. 141 318
[6] Barnsley M F 1988 Fractals Everywhere (New York: Academic) p205--290
[7] Mazel D S 1994 IEEE Trans. Sign. Proc. E 42 3269
[8] Price J R and Hayes M H 1998 IEEE Sign. Proc. Lett. 5 228
[9] Craciunescu O I, Das S K, Poulson J M and Samulski T V 2001 IEEE Trans. Biomed. Eng. 48 462
[10] Wang M J and Wang X Y 2009 Acta Phys. Sin. 58 1467 (in Chinese)
[11] Yang J, Lai X M, Peng G, Bian B M and Lu J 2009 Acta Phys. Sin. 58 3008 (in Chinese)
[12] Yang X D, Ning X B, He A J and Du S D 2008 Acta Phys. Sin. 57 1514 (in Chinese)
[13] Gemperline M C and Siller T J 2002 J. Comput. Civil Eng. 16 184
[14] Nath S K and Dewangan P 2002 Geophysi. Prospect. 50 341
[15] Tirosh S, Van De Ville D and Unser M 2006 IEEE Trans. Image Proc. 15 2616
[16] Bouboulis P and Dalla L 2007 J. Math. Anal. Appl. bf 336 919
[17] Li X F and Li X F 2008 Chin. Phys. Lett. 25 1157
No related articles found!
No Suggested Reading articles found!