Please wait a minute...
Chin. Phys. B, 2010, Vol. 19(8): 080305    DOI: 10.1088/1674-1056/19/8/080305
GENERAL Prev   Next  

Unconventional geometric logic gate in a strong-driving-assisted multi-mode cavity

Pan Chang-Ning(潘长宁)a), Yang Di-Wu(杨迪武)a), Zhao Xue-Hui(赵学辉)a), and Fang Mao-Fa(方卯发) b)
a School of Science, Hunan University of Technology, Zhuzhou 412008, China; b College of Physics and Information Science, Hunan Normal University, Changsha 410081, China
Abstract  We propose a scheme to implement an unconventional geometric logic gate separately in a two-mode cavity and a multi-mode cavity assisted by a strong classical driving field. The effect of the cavity decay is included in the investigation. The numerical calculation is carried out, and the result shows that our scheme is more tolerant to cavity decay than the previous one because the time consumed for finishing the logic gate is doubly reduced.
Keywords:  unconventional geometric gate      multi-mode cavity      cavity decay  
Received:  15 November 2009      Revised:  12 December 2009      Accepted manuscript online: 
PACS:  03.67.Lx (Quantum computation architectures and implementations)  
  02.40.-k (Geometry, differential geometry, and topology)  
  02.60.Jh (Numerical differentiation and integration)  
  03.65.Ud (Entanglement and quantum nonlocality)  
  03.65.Vf (Phases: geometric; dynamic or topological)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 50874041), and the Funds of Hunan Educational Bureau, China (Grant No. 09C314).

Cite this article: 

Pan Chang-Ning(潘长宁), Yang Di-Wu(杨迪武), Zhao Xue-Hui(赵学辉), and Fang Mao-Fa(方卯发) Unconventional geometric logic gate in a strong-driving-assisted multi-mode cavity 2010 Chin. Phys. B 19 080305

[1] Bennett C H and DiVincenzo D P 2000 Nature (London) 404 247
[2] Bennett C H, Brassard G, Cr'epeau C, Jozsa R, Peres A and Wootter W K 1993 Phys. Rev. Lett. 70 1993
[3] Wu Y 2001 Phys. Rev. A 63 052303
[4] Wu Y, Payne M G, Hagley E W and Deng L 2004 Phys. Rev. A 70 063812
[5] Ye L and Guo G C 2004 Phys. Rev. A 70 054303
[6] Zheng Y Z, Gu Y J, Wu G C and Guo G C 2003 Chin. Phys. 12 1070
[7] Pan C N and Fang M F 2007 Chin. Phys. 16 1009
[8] Li Y, Zhang T C, Zhang J X and Xie C D 2003 Chin. Phys. 12 861
[9] Rauschenbeutel A, Nogues G and Osnaghi S 1999 Phys. Rev. Lett. 83 5166
[10] Osnaghi S, Bertet P and Auffeves A 2001 Phys. Rev. Lett. 87 037902
[11] Zanardi P and Rasetti M 1999 Phys. Lett. 264 94
[12] Berry M V 1984 Proc. R. Soc. London A 392 45
[13] Aharonov Y and Anandan J 1987 Phys. Rev. Lett. 58 1593
[14] Zhu S L and Wang Z D 2000 Phys. Rev. Lett. 85 1076
[15] Zanardi P and Rasetti M 2000 Phys. Rev. A 61 010305
[16] Duan L M, Cirac J I and Zoller P 2001 Science 292 1695
[17] Zhu S L and Wang Z D 2003 Phys. Rev. Lett. 91 187902
[18] Pachos J and Walther H 2002 Phys. Rev. Lett. 89 187903
[19] Leibfried D, Demarco B, Meyer V, Lucas D, Barrett M, Britton J, Itano W M, Jelenkovic B, Langer C, Rosenband T and Wineland D J 2003 Nature (London) 422 412
[20] Chen C Y, Feng M, Zhang X L and Gao K L 2006 Phys. Rev. A 73 032344
[21] Wu Y and Yang X 1997 Phys. Rev. A bf 56 2443
[22] Luis A 2001 J. Phys. A 34 7677
[23] Wang X and Zanardi P 2002 Phys. Rev. A 65 032327
[1] Purification of entangled states for two atoms via cavity decay
Zheng Shi-Biao(郑仕标). Chin. Phys. B, 2008, 17(8): 2969-2972.
[2] Generation of various multiatom entangled graph states via resonant interactions
Dong Ping(董萍), Zhang Li-Hua (章礼华), and Cao Zhuo-Liang (曹卓良). Chin. Phys. B, 2008, 17(6): 1979-1984.
[3] Quantum teleportation of an arbitrary superposition of atomic states
Chen Qiong(陈琼) and Fang Xi-Ming(方细明). Chin. Phys. B, 2008, 17(5): 1587-1592.
[4] Teleportation of a two-atom entangled state via cavity decay
Ye Sai-Yun(叶赛云). Chin. Phys. B, 2007, 16(6): 1678-1682.
No Suggested Reading articles found!