Please wait a minute...
Chin. Phys. B, 2010, Vol. 19(10): 108701    DOI: 10.1088/1674-1056/19/10/108701
CROSS DISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY Prev   Next  

Effects of fractal gating of potassium channels on neuronal behaviours

Zhao De-Jiang(赵德江)a), Zeng Shang-You(曾上游) b)†, and Zhang Zheng-Zhen(张争珍)b)
a Department of Physics, Xiangtan University, Xiangtan 411105, China; b College of Electronic Engineering, Guangxi Normal University, Guilin 541004, China
Abstract  The classical model of voltage-gated ion channels assumes that according to a Markov process ion channels switch among a small number of states without memory, but a bunch of experimental papers show that some ion channels exhibit significant memory effects, and this memory effects can take the form of kinetic rate constant that is fractal. Obviously the gating character of ion channels will affect generation and propagation of action potentials, furthermore, affect generation, coding and propagation of neural information. However, there is little previous research on this series of interesting issues. This paper investigates effects of fractal gating of potassium channel subunits switching from closed state to open state on neuronal behaviours. The obtained results show that fractal gating of potassium channel subunits switching from closed state to open state has important effects on neuronal behaviours, increases excitability, rest potential and spiking frequency of the neuronal membrane, and decreases threshold voltage and threshold injected current of the neuronal membrane. So fractal gating of potassium channel subunits switching from closed state to open state can improve the sensitivity of the neuronal membrane, and enlarge the encoded strength of neural information.
Keywords:  memory effects      fractal gating      neuronal spiking  
Received:  20 February 2010      Revised:  10 April 2010      Accepted manuscript online: 
PACS:  02.50.Ga (Markov processes)  
  87.16.D- (Membranes, bilayers, and vesicles)  
  87.16.Uv (Active transport processes)  
  87.19.L- (Neuroscience)  
  87.19.R- (Mechanical and electrical properties of tissues and organs)  
Fund: Project supported by the Research Foundation of Education Bureau of Guangxi Autonomous Region of China, Initial Research Fund of Guangxi Normal University, and the Research Fund of Key Laboratory Construction in College of Electronic Engineering of Guangxi Normal University.

Cite this article: 

Zhao De-Jiang(赵德江), Zeng Shang-You(曾上游), and Zhang Zheng-Zhen(张争珍) Effects of fractal gating of potassium channels on neuronal behaviours 2010 Chin. Phys. B 19 108701

[1] Hodgkin A F and Huxley A F 1952 J. Physiol. 117 500
[2] Hodgkin A L and Huxley A F 1952 J. Physiol. 116 449
[3] Hodgkin A L and Huxley A F 1952 J. Physiol. 116 473
[4] Hodgkin A L and Huxley A F 1952 J. Physiol. 116 497
[5] Hille B 1992 Ionic Channels of Excitable Membranes 2nd edn. (Sunderland: Sinauer)
[6] Sakmann B and Neher E 1995 Single-Channel Recording 2nd edn. (New York: Plenum Press)
[7] Fei R and Cui D W 2009 Acta Phys. Sin. 58 5133 (in Chinese)
[8] Wang H Q, Yu L C and Chen Y 2009 Acta Phys. Sin. 58 5070 (in Chinese)
[9] Careri G, Fasella P and Gratton E 1975 CRC. Crit. Rev. Biochem. 3 141
[10] Gurd F R N and Rothgeb T M 1979 Adv. Prot. Chem. 33 73
[11] Williams R J P 1979 Biol. Rev. 54 389
[12] Karplus M and McCammon J A 1981 CRC. Crit. Rev. Biochem. 9 293
[13] Karplus M and McCammon J A 1983 Ann. Rev. Biochem. 52 263
[14] Levitt M 1983 J. Mol. Biol. 168 595
[15] Levitt M 1983 J. Mol. Biol. 168 621
[16] Ringe D and Petsko G A 1985 Mol. Biol. 45 197
[17] Karplus M and McCammon J A 1986 Sci. Am. 254 42
[18] Mercik S, Weron K and Siwy Z 1999 Phys. Rev. E 60 7343.
[19] Fulinski A, Grzywna Z, Mellor I and Siwy Z 1998 Phys. Rev. E 58 919
[20] Toib A, Lyakhov V and Marom S 1998 J. Neurosci. 18 1893
[21] Mercik S and Weron K 2001 Phys. Rev. E 63 051910
[22] Liebovitch L S, Scheurle D and Rusek M 2001 Methods 24 359
[23] Lan T, Liu H, Yuan H M and Lin J R 2003 Biophys. Chem. 106 203
[24] Kochetkov K V, Kazachenko V N, Aslanidi O V, Chemeris N K and Gapeev A B 1999 J. Biol. Phys. V 25 211
[25] Korn S J and Horn R 1988 Biophys. J. 54 871
[26] Liebovitch L S and Sullivan J M 1987 Biophys. J. 52 979
[27] Yu Z G, Vo A, Gong Z M and Long S C 2002 Chin. Phys. 12 1313
[28] Shang P J and Shen J S 2007 Chin. Phys. 16 365
[29] Zang B J and Shang P J 2007 Chin. Phys. 16 565
[30] Goychuk I and H"anggi P 2004 Phys. Rev. E 70 051915
[31] Goychuk I and H"anggi P 2003 Phys. Rev. Lett. 91 070601
[32] Goychuk I and H"anggi P 2004 Phys. Rev. E 69 021104
[33] Goychuk I, H"anggi P, Vega J L and Miret-Art'es S 2005 Phys. Rev. E 71 061906
[34] Kim S, Jeong J and Kwak Y 2005 J. Comput. Neurosci. 19 39
[35] Lowen S B, Liebovitch L S and White J A 1999 Phys. Rev. E 59 5970
[36] Cavalcanti S and Fontanazzi F 1999 Ann. Biomed. Eng. 27 682
[37] Jung P and Shuai J W 2001 Europhy. Lett. 56 29
[38] Zeng S and Jung P 2004 Phys. Rev. E 70 011903
[39] Zeng S and Tang Y 2009 Phys. Rev. E 80 021917
[40] Mino H, Rubinstein J T and White J A 2002 Ann. Biomed. Eng. 30 578
[41] Clay J R and DeFelice L J 1983 Biophys. J. 42 151
[42] Millhauser G L, Salpeter E E and Oswald R E 1988 Proc. Nat. Acad. Sci. USA 85 1503
[43] Nayak T K and Sikdar S K 2007 J. Membr. Biol. 219 19
[44] Rubinstein J T 1995 Biophys. J. 68 779
[45] Destexhe A, Mainen Z F and Sejnowski T J 1994 J. Comput. Neurosci. 1 195
[46] Squire L R, Bloom F E, Spitzer N C, Lac S D, Ghosh A and Berg D 2008 Fundamental Neuroscience 3rd edn. (Salt Lake City: Academic Press)
[47] Purves D, Augustine G J, Fitzpatrick D, Hall W C, LaMantia A, McNamara J O and White L E 2008 Neuroscience 4th edn. (Sunderland: Sinauer Associates)
[48] Zeng S, Tang Y and Jung P 2007 Phys. Rev. E 76 011905 endfootnotesize
[1] Nonlocal advantage of quantum coherence in a dephasing channel with memory
Ming-Liang Hu(胡明亮), Yu-Han Zhang(张宇晗), and Heng Fan(范桁). Chin. Phys. B, 2021, 30(3): 030308.
No Suggested Reading articles found!